• 제목/요약/키워드: membrane fatty acids

검색결과 150건 처리시간 0.031초

식이지방의 종류 및 d-Limonene 투여가 간 발암과정에 미치는 영향 (Effects of Different Dietary Oil and d-Limonene on Histopathological and Biochemical Changes in Experimental Hepatocarcinogenesis)

  • 이미숙;김정희
    • Journal of Nutrition and Health
    • /
    • 제33권1호
    • /
    • pp.23-32
    • /
    • 2000
  • The purpose of this study was to investigate the effcts of n-3, n-6 fatty arid and d-limonene on histopathological and biochemical changes in experimental rat hepatocarcinogenesis. To attain the above objectives, weanling Sprague-Dawley female rats were intraperitoneally injected twice with a dose of diethylnitrosamine(DEN, 50mg/kg body weight) and after 1 week 0.05% phenobarbital was provided with water. Sardine oil rich in n-3 fatty acids and corn oil rich in n-6 fatty acids were fed at 15% by weight and 5% d-limonene was added to the diet in each group. Ten weeks or 20 weeks after DEN treatment, rats were sacrifirced. The formation of glutathione S-transferase placental form positive(GST-P$\^$+/) foci was significantly decreased by the treatment of either sardine oil or d-limonene HMG-CoA reductase activity was not affected by dietary oils and d-limonene. Protein kinase C (PKC) activity was decreased by either sardine oil or d-limonene. Particularly d-limonene decreased the membrane PKC activity. Membrane Cholesterol/Phospholipid(Chol/PL) ratio was significantly decreased by d-limonene in sardine oil group. The data showed that GST-P$\^$+/ foci number was positively correlated with membrane PKC activity and serum cholesterol and negatively correlated with liver cholesterol level. These results suggest informations about the correlation between histopathological and biochemical changes such as cholesterol metabolism and PKC activity in experimental hepatocarcinogenesis and thereby can elucidate the possible mechanism related to the cancer inhibition.(Korean J Nutrition 33(1) : 23-32, 2000)

  • PDF

단감 과실의 과육 갈변과 세포막 투과성 및 지방산 조성 변화의 관계 (The Relationship among Flesh Browning, Membrane Permeability, and Fatty Acid Composition in Fuyu Persimmon Fruits)

  • 최성진
    • 한국식품저장유통학회지
    • /
    • 제5권1호
    • /
    • pp.35-39
    • /
    • 1998
  • The cell membrane properties in relation to flesh browning of Fuyu persimmon fruits during CA storage were studied. Compared to intact fruits, the flesh tissue of browned fruits showed higher rate of electrolyte leakage, indicating incresed membrane permeability. It could be assumed that the increased membrane permeability results in 1eakage of phenolic compounds from vacuole and their oxidation by contacting with PPO, inducing finally the development of flesh browning. In addition, lower content of fatty acids and higher saturation rate of them were found in browned fruits. In conculusion, it was suggested that the inhibited fatty acid metabolism and fatty acid saturation during CA storage cause membrane Permeability to increase.

  • PDF

Isolation of a Medium Chain Length Polyhydroxyalkanoic Acids Degrading Bacterium, Janthinobacterium lividum

  • Park, Jin-Seo;Park, Jeong-Youl;Joung, Pil-Mun;Park, Seong-Joo;Rhee, Young-Ha;Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • 제39권2호
    • /
    • pp.139-141
    • /
    • 2001
  • Medium-chain length polyhydrexyalkanoic acids (MCL-PHAs) degrading bacterium was isolated from the soil. The bacterium was identified as Janthinobacterium lividum by its biochemical properties, cell membrane fatty acids composition, and 16S rDNA sequence analysis. The bacterium showed a similarity of 0.911 with J. lividum according to the cell membrane fatty acids analysis and a similarity of 97% in the 16S rDNA requence analysis. Culture supernatant of the bacterium skewed the highest depolymerase activity toward polyhydroxynonanoic acid (PHN) that did not degrade the poly-$\beta$-hydroxybutyric acid (PHB). The esterase activity was also detected with p-nitrophenyl (PNP) esters of fatty acids such as PNP-dodecanoic PNP-dodecanoic acid, PNP-decanoic acid, and PNP-hexanoic acid.

  • PDF

Biological Significance of Essential Fatty Acids/Prostanoids/Lipoxygenase-Derived Monohydroxy Fatty Acids in the Skin

  • Ziboh, Vincent-A.;Cho, Yunhi;Mani, Indu;Xi, Side
    • Archives of Pharmacal Research
    • /
    • 제25권6호
    • /
    • pp.747-758
    • /
    • 2002
  • The skin displays a highly active metabolism of polyunsaturated fatty acids (PUFA). Dietary deficiency of linoleic acid (LA), an 18-carbon (n-6) PUFA, results in characteristic scaly skin disorder and excessive epidermal water loss. Although arachidonic acid (AA), a 20-carbon (n6) PUFA, is metabolized via cyclooxygenase pathway into predominantly prostaglandin $E_2(PGE_2)$ and $PGF_{2{\alpha}}$, the metabolism of AA via the 15-lipoxygenase (15-LOX) pathway, which is very active in skin epidermis and catalyzes the transformation of M into predominantly 15S-hydroxyeicosatetraenoic acid (15S-HETE). Additionally, the 15-LOX also metabolizes the 18-carbon LA into 13S-hydroxyoctadecadienoic acid (13S-HODE), respectively. Interestingly, 15-LOX catalyzes the transformation of $dihomo-{\gamma}-linolenic$ acid (DGLA), derived from dietary gamma-linolenic acid, to 15S-hydroxyeicosatrienoic acid (15S-HETrE). These monohydroxy fatty acids are incorporated into the membrane inositol phospholipids which undergo hydrolytic cleavage to yield substituted-diacylglycerols such as 13S-HODE-DAG from 13S-HODE and 15S-HETrE-DAG from 15S-HETrE. These substituted-monohydroxy fatty acids seemingly exert anti-inflammatory/antiproliferative effects via the modulation of selective protein kinase C as well as on the upstream/down-stream nuclear MAP-kinase/AP-1/apoptotic signaling events.

Growth Temperature-Dependent Conversion of De novo-Synthesized Unsaturated Fatty Acids into Polyhydroxyalkanoic Acid and Membrane Cyclopropane Fatty Acids in the Psychrotrophic Bacterium Pseudomonas fluorescens BM07

  • LEE , HO-JOO;RHO, JONG-KOOK;YOON, SUNG-CHUL
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1217-1226
    • /
    • 2004
  • A psychrotrophic bacterial strain, Pseudomonas fluorescens BM07, synthesized unsaturated fatty acids (UFA) from fructose in response to lowering of growth temperature, and incorporated them into both polyhydroxyalkanoic acid (PHA) and membrane lipid. The blocking of PHA synthesis by adding 5 mM 2-bromooctanoic acid to the growth medium, containing 70 mM fructose, was found to be a useful means to profile the composition of membrane lipid by gas chromatography. As the growth temperature changed from 35 to $50^{\circ}C$, the total content of two UFA, 3-hydroxy-cis-5­dodecenoic acid ($C_{12:1}$) and 3-hydroxy-cis-7-tetradecenoic acid ($C_{14:1}$), in PHA increased from 31 to 44 $mol\%$. The growth at lower temperatures also led to an increase in the level of two major UFA, palmitoleic acid (C16:1 cis9) and cis-vaccenic acid (C18:1 cis11), in membrane lipid. A fraction of these membrane-lipid UFA was converted to their corresponding cyclopropane fatty acids (CFA). The CFA conversion was a function of culture time, exhibiting biphasic increase before and after entering the stationary phase. However, pH changes in growth media had no effect on the CFA conversion, which is contrary to the case of E. coli reported. The cells grown at $30^{\circ}C$ responded to a cold shock (lowering the medium temperature down to $10^{\circ}C$) by increasing the level of C16:1 cis9 and C 18: I cis II up to that of $10^{\circ}C$-grown control cells and concomitantly decreasing the relative level of cis-9,10­methylenehexadecanoic acid (the CFA converted from C16:1 cis9) from 14 to 8 $mol\%$, whereas the 10-grown cells exhibited little change in the lipid composition when exposed to a warmer environment of $30^{\circ}C$ for 12 h. Based on this one- way response, we suggest that this psychrotrophic strain responds more efficiently and sensitively to a cold shock than to a hot shock. It is also suggested that BM07 strain is a good producer of two unsaturated 3-hydroxyacids, $C_{12:1}\;and\;C_{141:1}$.

한국 근해의 난바다곤쟁이 Euphausia pacifica의 지방 조성에 의한 섭식 생태 비교 (Comparisons of Feeding Ecology of Euphausia pacifica from Korean Waters Using Lipid Composition)

  • 김혜선;주세종;고아라
    • Ocean and Polar Research
    • /
    • 제32권2호
    • /
    • pp.165-175
    • /
    • 2010
  • Dietary lipid biomarkers (fatty acids, fatty alcohols, and sterols) in adult specimens were analyzed to compare and understand the feeding ecology of the euphausiid, Euphausia pacifica, from three geographically and environmentally diverse Korean waters (Yellow Sea, East China Sea, and East Sea). Total lipid content of E. pacifica from Korean waters was about 10% dry weight (DW) with a dominance of phospholipids (>46.9% of total lipid content), which are known as membrane components. A saturated fatty acid, C16:0, a monounsaturated fatty acid, C18:1(n-9), and two polyunsaturated fatty acids, C20:5(n-3) and 22:6(n-3), were most abundant (>60% of total fatty acids) in the fatty acid composition. Some of the fatty acids showed slight differences among regions although no significant compositional changes of fatty acids were detected between these regions. Phytol, originating from the side chain of chlorophyll and indicative of active feeding on phytoplankton, was detected all samples. Trace amounts of various fatty alcohols were also detected in E. pacifica. Specifically, krill from the Yellow Sea showed relatively high amounts of longchain monounsaturated fatty alcohols (i.e. 20:1 and 22:1), generally found in herbivorous copepods. Three different kinds of sterols were detected in E. pacifica. The most dominant of these sterols was cholest-5-en-$3{\beta}$-ol (cholesterol). The lipid compositions and ratios of fatty acid trophic markers are indicative of herbivory in E. pacifica from the Yellow Sea and East Sea (mainly feeding on dinoflagellates and diatoms, respectively). The lipid compositions and ratios of fatty acid trophic markers are indicative of carnivory or omnivory in E. pacifica from the East China Sea, mainly feeding on microzooplankton such as protozoa. In conclusion, lipid biomarkers provide useful information about krill feeding type. However, further analyses and experiments (i.e. gut content analysis, in situ grazing experiment, etc.) are needed to better understand the feeding ecology of E. pacifica in various marine environments.

신생흰쥐 피부섬유아세포의 배양액의 지방산의 종류와 양을 변화시켰을 때 세포의 증식과 지질과산화물 생성에 미치는 영향 (The Effects of Fatty Acids Supplementation in Culture Medium on Proliferation and Lipid Peroxides Production of Fibroblast from Neonate Rats)

  • 장영애
    • Journal of Nutrition and Health
    • /
    • 제29권2호
    • /
    • pp.159-165
    • /
    • 1996
  • This study was performed to investigate the effects of concentration and degree of unsaturation of fatty acids on cellular proliferation and lipid peroxide production, using primary skin fibroblasts from neonate rats Fibroblasts (CPD : 2.8-5.4). Cells were cultured either in control medium (Dulbecco's modified Eagle's medium supplement with 10% fetal bovine serum) or in media supplemented with various kinds (stearic, oleic, linoleic, arachidonic, linolenic, eicosapentaenoic acid) and amounts (5, 10, 25, 50, 100, 150uM)of fatty acids. Cellular proliferation ratio and lipid peroxice production were measured and morphological changes were observed. Cellular proliferation was inhibited and morphological changes were observed. Cellular proliferation was inhibited and morphological changes were observed in cells grown in stearic containing media. Oleic, arachidonic, and eicosapentaenoic aicd tend to stimulate cellualar proliferation, and linolenic acid had no effects. Lipid peroxide concentrations in fibroblasts increased in proportion to the contents and unsaturation of fatty acids in media. Especially supplementation of arachidonic acid accelerated cellualr lipid peroxidation. Free radicals may cause severs damage to biological molecules, so lipid peroxidation probably contributes cellular membrane damages. However there were little relationship between lipid peroxide production and cellular proliferation in this study. (Korean J Nutrition 29(2) : 159~165, 1996)

  • PDF

생리활성지방산;그 대사와 기능 (Physiologically Active Fatty Acids their Metabolism and Function)

  • 녹산광
    • 한국응용과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.15-24
    • /
    • 1996
  • Essentiality was proposed in the field of lipid by Burr and Burr in 1929. When rats were raised on the fat-free diet, their growth retarded and their skin and tails showed the characteristic deficient symptoms, which were relieved by the addition of ${\omega}6(n-6)$ polyunsaturated fatty acids as linoleic(LA) and arachidonic(AA) acids to the basal diet. LA is dehydrogenated to ${\gamma}-linolenic$ acid(GLNA) by ${\Delta}6$ desaturase, then GLNA is 2 carbon chain elongated by elongase to $dihomo-{\gamma}-linolenic$ acid(DGLNA), which is desaturated by ${\Delta}5$ desaturase to AA. These acids are called LA family or ${\omega}6(n-6)$ polyunsaturated fatty acids(PUFA). ${\alpha}-Linolenic$ acid(ALNA) is converted through the series of desaturation and elongation steps to docosahexaenic acid(DHA) via eicosapentaenoic acid(EPA). These acids belong to ALNA family or ${\omega}3(n-3)$PUFA. Human who consume large amounts of EPA and DHA, which are present in fatty fish and fish oils, have increased levels of these two fatty acids in their plasma and tissue lipids at the expense of LA and AA. Alternately, vegetarians, whose intake of LA in high, have more elevated levels of LA and AA and lower levels of EPA and DHA in plasma lipids and in cell membranes than omnivores. AA and EPA are metabolized to substances called eicosanoids. Those derived form AA are known as prostanocids(prostaglandins and prostacyclins) of the 2-types and leukotrienes of the 4-series, whereas those derived from EPA are known as prostanoids of the 3-types and leukotrienes of the 5-series. DGLNA is a precursor of the 1-types of prostaglandins. The metabolites of AA and EPA have competitive functions. Ingestion of EPA from fish or fish oil replaces AA from membrane phospholipids in practically all cells. So this leads to a more physiological state characterized by the production of proatanoids and leukotrienes that have antithrombic, antichemotactic, antivasoconstrictive and antiinflammatory properties. It is evident that ${\omega}3$ fatty acids can affect a number of chronic diseases through eicosanoids alone.

RAPID RECOVERY OF PHOTOSYNTHESIS FROM PHOTOINHIBITION IS RELATED TO FATTY ACID UNSATURATION OF CHLOROPLAST MEMBRANE LIPIDS IN CHILLING-RESISTANT PLANTS

  • Moon, Byoung-Yong;Kang, In-Soon;Lee, Chin-Bum
    • Journal of Photoscience
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 1998
  • The susceptibility of chilling-resistant spinach plants. and of chilling-sensitive squash plants to photoinhibition was compared in terms of the activity of photosystem II, in relation to the deuce of fatty acid unsaturation of chloroplast membrane lipids. From thylakoid membranes of the plants. monogalactosyl diacylgtycerol, digalactosyl diacylglycerol. sulfoquinovosyt diacylglycerol, and phosphatidylglycerol were seperated as major lipid classes. It was found that the content of cis-unsaturated fatty acids of phosphatidylglycerol was greater by 32% in spinach than that in squash. When leaf disks were exposed to light at 5$\circ$C, 15$\circ$C and 25$\circ$C, photochemical efficiency of photosystem II. measured as the ratio of the variable to the maximum fluorescence of chlorophyll, declined markedly in squash plants, as compared to spinach plants. When leaf disks were exposed to strong light in the presence of lincomycin, an inhibitor of protein synthesis in chloroplasts, photoinhibition was accelerated in the two types of plants. Moreover, lincomycin treatment abolished the differences in the degree of susceptibility to strong light, which had been observed between the two types of plants. When the extent of photoinhibition of photosystem II-mediated electron transport was compared in thylakoid membranes isolated from the two types of plants, there were no differences in the degree of inactivation of photosystem II activity. However, when intact leaf disks were exposed to strong light either at 10$\circ$C or at 25$\circ$C, and then were allowed to recover either at 17$\circ$C or at 25$\circ$C in dim light. chilling-resistant plants such as spinach and pea showed marked recovery from photoinhibition, in contrast to chilling-sensitive plants, such as squash and sweet potato. whose recovery was strongly dependent on the temperature. These findings are discussed in relation to the unsaturation of fatty acids in membrane phosphatidylglycerol. It appears that fatty acid unsaturation of membrane lipids accelerates the recovery of photosystem H from photoinhibition, without affecting the photo-induced inactivation process of photosystem II associated with photoinhibition.

  • PDF

과산화지질에 대한 재고찰 : 지방산 산화물은 고등생물이 만들어내는 칼슘-수송체인가\ulcorner (Lipid Peroxidation revisited : are Oxidized Fatty Acide cell's Own Calcium-specific Ionophores Produced by Higher Organisms\ulcorner)

  • 송영순
    • 약학회지
    • /
    • 제35권1호
    • /
    • pp.45-60
    • /
    • 1991
  • lonophores, uniquely, create specific pathways of ion permeability in model and cell membranes. Calcium-transporting ionophores of microbiological origin, such as A23187 and ionomycin, have been used as experimental tools to elucidate the physiological role of calcium as a second messenger in many cell types. These ionophores are believed to bypass the initial ligand-receptor step in the activation of cells by increasing membrane permeability to calcium. In this report, we shall discuss several naturally occurring substances that share some properties of calcium-ionophores, primarily concentrating on oxidized fatty acids. We have previously demonstrated that oxidized linoteic and arachidonic acids, obtained either by lipoxygenase catalysis or nonenzymatic processes, significantly promote calcium translocation in a two-phase partition model and modulate calcium-transporting function in the isolated sarcoplasmic reticulum vesicles obtained from mammalian hearts. We have also confirmed that calcium-ionophoric properties are due not to their general amphiphilic nature of certain lipids, but to distinct structural characteristics. Although there are some skeptical views on the occurrence of ionophores in higher organisms, increasing evidence suggests that membrane lipids or their derivatives may serve as physiological calcium-ionophores. Abnormal accumulation of lipid peroxidation products(particularly end products), however, may be associated with the general oxidative damages as seen in many pathological conditions.

  • PDF