• Title/Summary/Keyword: membrane deformability

Search Result 12, Processing Time 0.026 seconds

Alteration in Erythrocyte Deformability in Diabetes Mellitus

  • Shin, Se-Hyun;Singh, Megha
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.4 no.1
    • /
    • pp.17-26
    • /
    • 2006
  • Diabetes mellitus (DM) is a metabolic disorder, characterized by varying or persistent hyperglycemia, which induces several changes in the erythrocyte membrane and its cytoplasm, leading to alteration in the deformability. Techniques applied to measure this are based on filtration of erythrocyte suspension through a membrane and to obtain diffraction pattern under sheared conditions. Ektacytometry requiring less quantity of blood with disposable flow chamber used to measure the deformability of erythrocytes obtained from patients with diabetes and also associated with nephropathy and retinopathy. A decreasing trend of deformability in these patients is observed. The shape parameter form factor, as determined by image processing procedure, increases with the increased of blood glucose levels and shows a pattern similar to filtration time of erythrocyte suspensions through cellulose membranes. Further work is suggested to detect micro-level changes in cell membrane in diabetic patients

  • PDF

Bio-inspired Cell Deformability Monitoring Chips Based on Strain Dependent Digital Lysis Rates (미소유로의 길이에 따른 통과세포의 파괴율을 바탕으로 한 생체모사 세포 변형성 검사칩에 관한 연구)

  • Youn, Se-Chan;Lee, Dong-Woo;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.844-849
    • /
    • 2008
  • We present a novel cell deformability monitoring chip based on the digitally measured cell lysis rate which is dependent on the areal strain of the cell membrane. This method offers simple cell deformability monitoring by automated high-throughput testing system. We suggest the filter design considering the areal strain imposed on the cell membrane passing through the filter array having gradually increased orifice length. In the experiment using erythrocytes, we characterized the cell deformability in terms of average fracture areal strain which was $0.24{\pm}0.014\;and\;0.21{\pm}0.002$ for normal and chemically treated erythrocytes, respectively. We also verified that the areal strain of 0.15 effectively discriminates the deformability difference of normal and chemically treated erythrocytes, which can be applied to the clinical situation. We compared the lysis rates and their difference for the samples from different donors and found that the present chips can be commonly used without any calibration process. The experimental results demonstrate the simple structure and high performance of the present cell deformability monitoring chips, applicable to simple and cost-effective cell aging process monitoring.

Red Blood Cell Deformability and its Hemorheological Consideration (적혈구 변형성과 혈액유변학적 고찰)

  • Ku, Yun-Hee;Zhang, Lijuan;Park, Myung-Su;Shin, Se-Hyun;Suh, Jang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1505-1509
    • /
    • 2004
  • The suspension of hardened red blood cells (RBCs) differs from the suspension of normal RBCs with respect to their rheological behavior. The deformability of normal and hardened RBCs (obtained by heating blood at $49^{\circ}C$ or by incubating RBCs in a solution of hydrogen peroxide) was measured with a slit diffractometer and RBC suspension viscosity was measured with a rotational viscometer. The peroxide-treated RBCs showed a significant decrease of the deformability and their suspension viscosity increased over a range of shear rates. The suspension viscosity of the heated RBCs, however, where the deformability is even lower than that of the peroxide-treated RBCs, was slightly higher than that of the normal RBC suspension in the high shear rates. The present study found that not all rigid cells cause an increase of blood viscosity at high shear rate, and therefore that decreased membrane deformability is not predictive of high-shear blood viscosity.

  • PDF

The Changes of Erythrocyte Feature and Ca Concentration in Rat Fed the Diet Containing Different Common Oils in Korea : Sesame Oil, Perilla Oil, Rice Bran Oil and Mixed Oil (급원이 다른 식이 지방이 흰쥐의 적혈구 성상 및 Ca 함량에 미치는 영향 -참깨유, 들깨유, 미강유 중심으로-)

  • 김숙희
    • Journal of Nutrition and Health
    • /
    • v.26 no.5
    • /
    • pp.524-531
    • /
    • 1993
  • In this experiment, we investigated the changes of erythrocyte feature and Ca concentration in rat fed the diet containing different common oils in Korea for different feeding periods(4 weeks or 12 weeks), using Korea sesame oil, perilla oil, rice bran oil and mixed oil. W-3/w-6 ratio of each group was 0.001, 1.44, 0.03 and 0.112, respectively. P/S ratio of each group was 9.64, 10.49, 5.58 and 1.68, respectively. Perilla oil(w-3 rich) increased w-3/w-6 ratio of erythrocyte membrane, decreased the amount of trapped Ca and inhibited the decrease of cell volume. These results indicate that in maybe increase erythroyte fluidity and deformability, and affect erythrocyte function. In conclusion, w-3 rich perilla oil affects erythrocyte feature.

  • PDF

Effects of Brazilin on Lipid and Phosphatidyl Fatty Acid Composition of Erythrocyte Membrane in Streptozotocin-induced Diabetic Rats

  • Moon, Change-Kiu;Yoon, Eun-Yi;Lee, Soo-Hwan;Moon, Chang-hyun;Hwang, Daniel-H.
    • Archives of Pharmacal Research
    • /
    • v.16 no.2
    • /
    • pp.147-151
    • /
    • 1993
  • In diabetes, the abnormal increase of the membrane cholesterol/phospholipid ratio (C/PL) is consdered to be the main reason for the decreased membrane fluidity, which then results in impaired erythrocyte deformability and subsequent microcirculatory disturbances. In this study, we examined the effects of brazilin on lipid and phosphatidyl fatty acid composition of erythrocyte membranes in streptozotocin induced diabetic rats. Treatment of brazilin (10mg/kg or 100 mg/kg for 2 weeks, i.p) altered and cholesterol contents in diabetic erythrocyte membranes. The C/PL ratio of brazilin treated groups decreased compared with that of diabetic control group while no change was observed in normal erythrocytes. In streptozotocin induced diabetic rats, alterations in phosphatidyl fatty acid compositioin of erythrocyte membranes were observed and brazilin could reverse these alterations. Arachidonic acid level reumed to a normal level while linoleic acid level remained unchanged by the treatment of brazilin. The results suggest that brazilin might increase erythrocyte membrane fluidity which plays a key role inregulating erythrocyte deformability, thereby it could exert positive effects on microdiculatory disturbances.

  • PDF

Effect of Fatty Acid on the Membrane Fluidity of Liposomes (지방산 첨가가 리포좀 유동성에 미치는 영향에 관한 연구)

  • Lee, JinSun;Chi, Gyeong-Yup;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2017
  • In the present work, the interaction of fatty acid with vesicle membrane of phospholipids was investigated using 3 different kinds of fatty acids such as stearic acid (SA), oleic acid (OA) and linoleic acid (LA). Basically, the same trend has been found in 3 fatty acid systems. The addition of fatty acid produced a close packing of liposome due to the penetration of fatty acid molecules into liposome vesicles, which resulted in a decrease in size and an increase in zeta potential of liposome. However, excessive addition of fatty acid produced a transition from liposomes to aggregates of lipid particles having polymorphic structure. The membrane fluidity, characterized by measuring membrane deformability and fluorescence anisotropy ratio of liposomes, was in good agreement with measurement results of transmission electron microscopy (TEM) and particle size. The minimum size and closest packing of liposome with SA, OA and LA were found when the molar ratios of fatty acid to lecithin were 0.70, 0.50, and 0.25 respectively.

Enhanced Transdermal Delivery of Drug Compounds Using Scalable and Deformable Ethosomes (에토좀 입자크기와 멤브레인 특성 조절을 통한 약물의 경피흡수능 향상)

  • An, Eun-Jung;Shim, Jong-Won;Choi, Jang-Won;Kim, Jin-Woong;Park, Won-Seok;Kim, Han-Kon;Park, Ki-Dong;Han, Sung-Sik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.2
    • /
    • pp.105-113
    • /
    • 2010
  • This study introduces a flexible approach to enhance skin permeation by using ethosomes with deformable lipid membranes as well as controllable sizes. To demonstrate this, a set of ethosomes encapsulating an anti-hair loss ingredient, Triaminodil$^{TM}$, as a model drug, were fabricated with varying their size, which was achieved by solely applying the different level of mechanical energy, while maintaining their chemical composition. After characterization of the ethosomes with dynamic light scattering, transmission electron microscopy, and deformability measurements, it was found that their membrane deformability depended on the particle size. Moreover, studies on in vitro skin permeation and murine anagen induction allowed us to figure out that the membrane deformability of ethosomes essentially affects delivery efficiency of Triaminodil$^{TM}$ through the skin. It was noticeable in our study that there existed an optimum particle size that can not only maximize the delivery of the drug through the skin, but also increase its actual dermatological activity. These findings offer a useful basis for understanding how ethosomes should be designed to improve delivery efficiency of encapsulated drugs therein in the aspects of changing their length scales and membrane properties.

The Stabilizing Effects of Phospholipids on the Human Erythrocyte Membranes (인체적혈구막(人體赤血球膜) 안정화(安定化)에 미치는 인지질(燐脂質)의 영향(影響))

  • Kim, Yong-Ki;Kim, Jae-Back
    • Journal of Pharmaceutical Investigation
    • /
    • v.11 no.2
    • /
    • pp.1-10
    • /
    • 1981
  • Phospholipids were examined for their capacity to protect human erythrocytes against hemolysis induced by hypotonic solution, p-hydroxymercuribenzoate or hematin. The following results were obtained. 1. Phosphatidyl choline, lysophosphatidyl choline and phophatidyl ethanoleamine as well as chlorpromazine prevented the osmotic hemolysis of human erythrocytes which occurred due to water influx into erythrocytes from medium, but showed no effect on hematin-induced hemolysis which occurred without the volume change of erythrocytes. 2. Human erythrocytes were found to be most sensitive to the antihemolytic action of phospholipids among mammalian erythrocytes from sheep, rabbit, rat and mouse. 3. Phospholipids at the concentrations showing their strong antihemolytic effect on human erythrocytes against osmotic hemolysis had no influence on methylene blue uptake and volume change of erythrocytes in hypotonic solution. 4. Phospholipids increased erythrocyte deformability 2 to 3 times over control group and there was aclose relationship between their antihemolytic action and increase of deformability as a function of their concentrations. 5. The phospholipids increased the resistance to osmotic hemolysis of human erythrocytes by increasing membrane elasticity through their incorporation into lipid bilayer without altering glucose metabolism and water influx to erythrocytes.

  • PDF

The Effect of the Aging of Red Blood Cells on Rheological Properties and Hemolysis

  • Tomioka, Jun;Motokubo, Kazuhiro;Watanabe, Hisayoshi
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.371-372
    • /
    • 2002
  • It is well known that red blood cells (RBCs) are suffered from chronic stresses in systemic circulation. The objective of this study is to clarify the effect of the aging of RBCs on rheological properties and hemolysis. Initially, RBCs age fractionation was performed by using a high-speed centrifugation (15[min] at 1500[G]), then young and aged RBCs were suspended in plasma to adjust the hematocrit level of 40[%]. After this pretreatment, the viscosity was measured by using a capillary type and a cone-plate type viscometers, respectively, and the hemolysis test was carried out by a seesaw type shaker. Results from these experiments showed that the viscosity of the aged RBCs measured by the capillary viscometer was increased by 10[%] as compared with that of the young RBCs. Under the condition of all shear zones, the viscosity of the aged RBCs was increased in case of using the cone-plate type viscometer. And the hemolytic level was increased twice as the aging. The data obtained in this study indicated that the ability of aggregation of RBCs was increased and the deformability of RBCs membrane got lower with the aging. Furthermore, it was exhibited that the fragility of RBCs ’ membrane was increased with the aging.

  • PDF

The Effect of Woohwangcheongsim-won on Circulatory Disturbance in Diabetes (우황청심원이 당뇨병 Rat의 혈액순환장애에 미치는 영향)

  • 황성록;정승현;신길조;이원철
    • The Journal of Korean Medicine
    • /
    • v.23 no.2
    • /
    • pp.164-179
    • /
    • 2002
  • Object: Death rate due to hypertension, atherosclerosis, ischemic heart disease and cerebral infarction induced by Westernized diet and increased average life span is on the rise. Decrease in blood circulation, activation of thrombus generation and intravascular lipid accumulation, cited as the principal causes of the above mentioned diseases in recent studies, result in circulatory disturbance and blood vessel obstruction leading to ischemic cell death of heart, brain and peripheral vessels. Method: We investigated the biochemical changes in microvascular permeability, aggregation of platelet and the intravascular lipid accumulation in induced-diabetic rat using Streptozotocin. We also studied the effects of Woohwangcheongsirn-won after oral administration on blood circulation, platelet function and lipid metabolism. The results are as follows: I. Woohwangcheongsim-won increased blood circulation in microvessels. 2. Woohwangcheongsim-won increased the reduced erythrocyte deformability in diabetes. 3. Woohwangcheongsim-won induced the reduction of contents of 2, 3-DPG, but failed to affect the reduced contents of ATP in erythrocyte in diabetes. 4. Woohwangcheongsim-won reduced the activity of Ca/sup 2+/-ATPase in the membrane of erythrocyte. 5. Woohwangcheongsim-won reduced the platelet aggregation evoked by platelet agglutinin factor. 6. Woohwangcheongsim-won reduced the production of platelet-derived granules. 7. Woohwangcheongsim-won reduced the production of metabolites of arachidonic acid in diabetes, and also reduced the production of increased thromboxane B2. 8. Woohwangcheongsim-won reduced the synthesis of oxidized LDL-cholesterol. In conclusion, Woohwangcheongsim-won enhanced blood circulation in microvesseles, erythrocyte deformability and inhibited the increased platelet aggregation and the synthesis of oxidized LDL-cholesterol in diabetes. Therefore Woohwangcheongsim-won is believed to positively affect blood circulation (J Korean Oriental Med 2002;23(2):164-179)

  • PDF