• Title/Summary/Keyword: membrane chemistry

Search Result 1,170, Processing Time 0.022 seconds

Controlled Drug Delivery through Poly(acrylic acid-g-urethane) Porous Membrane (폴리아크릴산이 그라프트된 다공성 폴리우레탄막을 통한 약물의 방출조절)

  • Kim, Jin Hong;Lee, Young Moo;Jung, Chung Nam
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.296-304
    • /
    • 1992
  • Porous polyurethane membrane was prepared by the phase inversion process with variable permeability in response to pH and solvent composition. Hydrophilic polymers were grafted on the surface of the symmetric porous membrane. Porous polyurethane membrane was obtained in DMSO/methanol. It was subsequently grafted with acrylamide on the surface with ceric ammonium nitrate(CAN) as a initiator, followed by the hydrolysis to obtain poly(acrylic acid-g-urethane) (PAA-g-PU) membrane. The change in permeability of vitamine $B_2$(riboflavin) was investigated through PAA-g-PU. For PAA-g-PU membrane, permeability increased with the decrease in pH, and with an increase in solvent content in sink solution.

  • PDF

Preparation and Characterization of Polyamide Thin Film Composite Reverse Osmosis Membranes Using Hydrophilic Treated Microporous Supports (친수성 처리된 다공성 지지체를 이용한 폴리아마이드 박막 역삼투 복합막 제조 및 특성 분석)

  • Son, Seung Hee;Jegal, Jonggeon
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 2014
  • It is very well known that the conventional polyamide (PA) thin film composite (TFC) reverse osmosis (RO) membranes have excellent permselective properties, but their chlorine tolerance is not good enough. In this study, to improve such chlorine tolerance, microporous membranes containing hydrophilic functional groups such as -COOH were used as a support to prepare PA TFC RO membranes, employing the conventional interfacial polymerization method. Meta-phenylene diamine (MPD) and 2,6-diamine toluene (2,6-DAT) were used as diamine monomers and tri-mesoyl chloride (TMC) as an acid monomer. The membranes prepared were characterized using various instrumental analytical methods and permeation test set-up. The flux obtained from the membranes prepared so was more than $1.0m^3/m^2day$ at 800 psi of operating pressure, while the salt rejection was over 99.0%. The chlorine tolerance of them was also found to be better than that of the membrane prepared by using conventional polysulfone support without hydrophilic functional groups.

Pervaporation Dehydration of Acetic Acid Aqueous Solution using PVA/PAA Membrane with Na-Y Zeolite (Na-Y 제올라이트가 첨가된 PVA/PAA 분리막의 아세트산 수용액에서 투과 증발 연구)

  • Kwon, YongSung;Chaudhari, Shivshankar;Moon, MyungJun;Shon, MinYoung;Park, Ahrumi;Kim, YoungMi
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.778-784
    • /
    • 2017
  • Membranes were prepared by incorporating Na-Y zeolite particles into poly(vinyl alcohol) (PVA) cross-linked with poly(acrylic acid) (PAA). The membrane was characterized by FT-IR spectroscopy, contact angle measurement, swelling test, SEM analysis, and XRD analysis. The pervaporation separation of water/acetic acid mixtures was carried out using prepared membranes. From the results, it was shown that the hydrophilic property of prepared membrane increased with increase of zeolite contents and the PVA/PAA membrane with zeolite addition showed higher permeation flux than that of without zeolite membrane. The PVA/PAA membrane containing 8 wt% zeolite showed the highest permeation flux and separation in the feed solution containing 10 wt% acetic acid.

Surface Modification of Polypropylene Membrane by ${\gamma}$ Irradiation Methods and their Solutes Permeation Behaviors

  • Shim, J. K.;Lee, S. H.;Kwon, O. H.;Lee, Y. M.;Nho, Y. C.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.04a
    • /
    • pp.99-101
    • /
    • 1998
  • 1. Introduction : The conventional grafting polymerization technique requires chemically reactive groups on the surface as well as on the polymer chains. For this reason, a series of prefunctionalization steps are necessary for covalent grafting. The surface prefunctionalizational technique for grafting can be used to ionization radiation, UV, plasma, ion beam or chemical initiators. Of these techniques, radiation method is one of the useful methods because of uniform and rapid creation of active radical sites without catalytic contamination in grafted samples. If the diffusion of monomer into polymer is large enough to come to the inside of polymer substrate, a homogeneous and uniform grafting reaction can be carried out throughout the whole polymer substrate. Radiation-induced grafting method may attach specific functional moieties to a polymeric substrate, such as preirradiation and simultaneous irradiation. The former is irradiated at backbone polymer in vacuum or nitrogen gas and air, and then subsequent monomer grafting by trapped or peroxy radicals, while the latter is irradiated at backbone polymer in the presence of the monomer. Therefore, radiation-induced polymerization can be used to modification of the chemical and physical properties of the polymeric materials and has attracted considerable interest because it imparts desirable properties such as blood compatibility. membrane quality, ion excahnge, dyeability, protein adsorption, and immobilization of bioactive materials. Synthesizing biocompatible materials by radiation method such as preirradiation or simultaneous irradiation has often used $\gamma$-rays to graft hydrophilic monomers onto hydrophobic polymer substrates. In this work, in attempt to produce surfaces that show low levels of anti-fouling of bovine serum albumin(BSA) solutions, hydroxyethyl methacrylate(HEMA) was grafted polypropylene membrane surfaces by preirradiation technique. The anti-fouling effect of the polypropylene membrane after grafting was examined by permeation BSA solution.

  • PDF

The Preparation and Characteristics of Covalently Cross-Linked SPEEK/Cs-TPA/Ceria Composite Membranes for Water Electrolysis (수전해용 공유가교 SPEEK/Cs-TPA/Ceria 복합막의 제조 및 특성 연구)

  • Song, Minah;Ha, Sungin;Park, Deayong;Ryu, Cheolhwi;Moon, Sangbong;Kang, Ansoo;Chung, Janghoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.437-447
    • /
    • 2012
  • Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the polymer electrolyte membrane water electrolysis (PEMWE) circumstance and to increase the duration of the membrane. In order to improve the electrochemical, mechanical and electrocatalytic characteristics, engineering plastic of the sulfonated polyether ether ketone (SPEEK) as polymer matrix was prepared in the sulfonation reaction of polyether ether ketone (PEEK) and the organic-inorganic blended composite membranes were prepared by sol-gel casting method with loading the highly dispersed ceria and cesium-substituted tungstophosphoric acid (Cs-TPA) with cross-linking agent contents of 0.01 mL. In conclusion, CL-SPEEK/Cs-TPA/ceria (1%) membrane showed the optimum results such as 0.130 S/cm of proton conductivity at $80^{\circ}C$, 2.324 meq./g-dry-membrane of ion exchange capacity and mechanical characteristics, and 65.03 MPa of tensile strength which were better than Nafion 117 membrane.

The Effect of ZnCl$_2$ on Polysulfone Membrane

  • Kim, Sue-Ryeon;Lee, Kew-Ho;Jhon, Mu-Shik
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.34-35
    • /
    • 1993
  • The study was undertaken to investigate the effects of ZnCl$_2$ in polysulfone(PSf)/N-methylpyrrolidone(NMP) on the structure and performance of its membrane. The effects of additives on the performances of membranes have been studied. It has been shown that some low molecular weight additives in polysulfone(PSf) casting solutions have effects on the performances of membranes cast from these solutions. It had been reported that ZnCl$_2$, as the additives-in PSf casting solution, decreases water permeability and increases the rejection rate of its membrane.

  • PDF

Syndecan-4 cytoplasmic domain could disturb the multilamellar vesicle

  • Kim, Suhk-Mann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • Syndecan-4 cytoplasmic domain was tested to confirm the interactions with the bilayer membrane using $^{31}P$ solid-state NMR measurements. Syndecan-4 was known as a coreceptor with integrins in the cell adhesion. The syndecan-4 V region is not understood of its functional roles and tested its ability of the interaction with multilamellar vesicles. The $^{31}P$ powder pattern was dramatically changed and showed isotropic peak which imply the bilayer membrane changed its topology to the micelle-like structure. Especially, phosphatidylcholine membrane was affected this effect more than phosphatidylethanolamine membrane.

Hollow Fiber Membrane Bioreactor (실관 막 생물 반응기)

  • Kim, In Ho
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.911-916
    • /
    • 1994
  • Hollow fiber membrane has been successfully developed as an artificial kidney device in the 1970's. In the early 1970's animal cells were introduced into a hollow fiber membrane cartridge and well propagated in the cartridge. Since then, hollow fiber membrane was utilized as a bioreactor in order to immobilize enzymes as well as to culture microbial cells and plant cells. In this review, the present status and the prospect of hollow fiber membrane bioreactor are investigated in view of cell density and product productivity.

  • PDF

${\beta}-Ag_3SI$ Single Crystal Membrane Electrode (${\beta}-Ag_3SI$ 단결정막 전극에 관한 연구)

  • Sin Doo-Soon;Seon-Cheon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.28 no.2
    • /
    • pp.86-94
    • /
    • 1984
  • The single crystal ion-selective electrode,$ {\beta}-Ag_3SI/PVC-THF $membrane electrode has showed a linear potential response to the activities of iodide ion (10-1${\sim}$10-7M). The $ {\beta}-Ag_3SI$ membrane electrode was compared with AgI/PVC-THF membrane and copper metal plate membrane electrodes. In order to measure the selectivity coefficient of the electrodes toward $Cl^-$ and $Br^-$, the separation and mixed solution method were employed. The potential-time curve was obtained by the usual immersion technique and pH effect was also examined. The orders of selectivity for $Br^-$, $Cl^-$ and stability of response time are ${\beta}-Ag_3SI/PVC-THF $membrane > AgI/PVC-THF membrane > copper metal plate membrane. These electrodes could be used as indicating electrodes in the potentiometric titration of a single halide and mixed halides with the standard solution of silver nitrate.

  • PDF