• Title/Summary/Keyword: membrane characterization

Search Result 682, Processing Time 0.038 seconds

Nanofiltration of Dye Solutions Through Polyamide Composite Membranes

  • Jonggeon Jegal;Baek, Kyung-Sook;Lee, Kew-Ho
    • Korean Membrane Journal
    • /
    • v.4 no.1
    • /
    • pp.12-19
    • /
    • 2002
  • Nanofiltration of aqueous dye solutions was carried out using polyamide (PA) nanofiltration (NF) composite membranes. The PA composite membranes were prepared by the interfacial polymerization of piperazine (PIP) and trimesoyl chloride (TMC) on the surface of microporous polysulfone (PSf) ultrafi1tration (UF) membranes. After characterization in terms of their permeation performance and surface ionic property, they were used for the separation of dye solutions such as Direct Red 75, 80, 81, and Direct Yellow 8 and 27. The separation conditions were varied to study the factors affecting on the permeation performance of the membranes: different concentrations of dye solutions, operating temperature and time, and flow rate of a feed solution. The surface property of the membrane, especially its ionic property, as a function of operating time was examined with a zeta-potentiometer and the relationship between the surface chemistry of the membrane and its permeation properties was also studied.

Synthesis and Characterization of Copoly(amide-imide) Derivatives and Ultrafiltration Membrane Performances II - Permeation Properties of Copoly(amide-imide)s Ultrafiltration Membranes -

  • Jeon, Jong- young;Kim, Jong-hp
    • Korean Membrane Journal
    • /
    • v.3 no.1
    • /
    • pp.24-31
    • /
    • 2001
  • Ultrafiltration membranes base on copoly(amide-imide) derivatives were prepared by the phase inversion method and the factors determining the permeation characteristics of membrane were investigated. The permeation behavior was observed by the relative ratio of permeate flux (J$\_$t/)/pure water flux (J$\_$o/). The characteristics through membrane were measured using aqueous solution of poly(ethyleneglycol) (MW 2.0$\times$10$\^$4/) over a temperature range of 10∼90$\^{C}$. With increasing the operating temperature, the relative ratio of flux became high. All the membranes had good chemical stability. Copoly(amide-imide) membranes having various Permeation properties could be obtained. Further, it was proved that the membrane performances could be determined from the preparation conditions as well as various operating conditions.

  • PDF

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.