• Title/Summary/Keyword: membership degree

Search Result 147, Processing Time 0.023 seconds

Dynamic Adaptive Binarization Method Using Fuzzy Trapezoidal Type and Image Stepwise Segmentation (퍼지의 사다리꼴 타입과 영상 단계적 분할을 이용한 동적 적응적 이진화 방법)

  • Lee, Ho Chang
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.5
    • /
    • pp.670-675
    • /
    • 2022
  • This study proposes an improved binarization method to improve image recognition rate. The research goal is to minimize the information loss that occurs during the binarization process, and to transform the object of the original image that cannot be determined through the transformation process into an image that can be judged. The proposed method uses a stepwise segmentation method of an image and divides blocks using prime numbers. Also, within one block, a trapezoidal type of fuzzy is applied. The fuzzy trapezoid is binarized by dividing the brightness histogram area into three parts according to the degree of membership. As a result of the experiment, information loss was minimized in general images. In addition, it was found that the converted binarized image expressed the object better than the original image in the special image in which the brightness region was tilted to one side.

An improvement on fuzzy seismic fragility analysis using gene expression programming

  • Ebrahimi, Elaheh;Abdollahzadeh, Gholamreza;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.577-591
    • /
    • 2022
  • This paper develops a comparatively time-efficient methodology for performing seismic fragility analysis of the reinforced concrete (RC) buildings in the presence of uncertainty sources. It aims to appraise the effectiveness of any variation in the material's mechanical properties as epistemic uncertainty, and the record-to-record variation as aleatory uncertainty in structural response. In this respect, the fuzzy set theory, a well-known 𝛼-cut approach, and the Genetic Algorithm (GA) assess the median of collapse fragility curves as a fuzzy response. GA is requisite for searching the maxima and minima of the objective function (median fragility herein) in each membership degree, 𝛼. As this is a complicated and time-consuming process, the authors propose utilizing the Gene Expression Programming-based (GEP-based) equation for reducing the computational analysis time of the case study building significantly. The results indicate that the proposed structural analysis algorithm on the derived GEP model is able to compute the fuzzy median fragility about 33.3% faster, with errors less than 1%.

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

A Study on Color Information Recognition with Improved Fuzzy Inference Rules (개선된 퍼지 추론 규칙을 이용한 색채 정보 인식에 관한 연구)

  • Woo, Seung-Beom;Kim, Kwang-Baek
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.105-111
    • /
    • 2009
  • Widely used color information recognition methods based on the RGB color model with static fuzzy inference rules have limitations due to the model itself - the detachment of human vision and applicability of limited environment. In this paper, we propose a method that is based on HSI model with new inference process that resembles human vision recognition process. Also, a user can add, delete, update the inference rules in this system. In our method, we design membership intervals with sine, cosine function in H channel and with functions in trigonometric style in S and I channel. The membership degree is computed via interval merging process. Then, the inference rules are applied to the result in order to infer the color information. Our method is proven to be more intuitive and efficient compared with RGB model in experiment.

  • PDF

Fuzzy Uncertainty Analysis of the Bird Strike Simulation (퍼지이론을 적용한 불확실성이 존재하는 조류충돌 해석)

  • Lee, Bok-Won;Park, Mi-Young;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.983-989
    • /
    • 2007
  • The bird strike simulation is a problem characterized by a high degree of uncertainty. It deals with nonlinear dynamics, complicated models of bird materials and geometry, as well as a plenty of possible boundary and initial conditions. In this complex field, uncertainty management plays an important role. This paper aims to assess the effect of input uncertainty of bird strike analysis on the impact behavior of the leading edge of the WIG(Wing in Ground Effect) craft obtained with finite element analysis using LS-DYNA 3D. The uncertainties of the bird strike simulation arise due to imprecision or lack of information, due to variability or scatter, or as a consequence of model simplification. These uncertain parameters are represented by fuzzy numbers with their membership functions quantifying an initial guess for the actual value of the model parameter. Using the transformation method as a special implementation of fuzzy arithmetic, the model can be analyzed with the intention of determining the influence of each uncertain parameter on the overall bird strike behavior.

Call Admission Control in ATM by Neural Networks and Fuzzy Pattern Estimator (신경망과 퍼지 패턴 추정기를 이용한 ATM의 호 수락 제어)

  • Lee, Jin-Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.8
    • /
    • pp.2188-2195
    • /
    • 1999
  • This paper proposes a new call admission control scheme utilizing an inverse fuzzy vector quantizer(IFVQ) and neuralnet, which combines benefits of IFVQ and flexibilities of FCM(Fuzzy-C-Means) arithmetics, to decide whether a requested call not to be trained in learning phase to be connected or not. The system generates the estimated traffic pattern for the cell stream of a new call, using feasible/infeasible patterns in codebook, fuzzy membership values that represent the degree to which each pattern of codebook matches input pattern, and FCM arithmetics. The input to the NN is the vector consisted of traffic parameters which are the means and variances of the number of cells arriving in decision as to whether to accept or reject a new call depends on whether the NN is used for decision threshold(+0.5). This method is a new technique for call admission control using the membership values as traffic parameter which declared to CAC at the call set up stage, and this is valid for a very general traffic model in which the calls of a stream can belong to an unlimited number of traffic classes. Through the simulations, it is founded the performance of the suggested method outperforms compared to the conventional NN method.

  • PDF

Generation of Efficient Fuzzy Classification Rules for Intrusion Detection (침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성)

  • Kim, Sung-Eun;Khil, A-Ra;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.519-529
    • /
    • 2007
  • In this paper, we investigate the use of fuzzy rules for efficient intrusion detection. We use evolutionary algorithm to optimize the set of fuzzy rules for intrusion detection by constructing fuzzy decision trees. For efficient execution of evolutionary algorithm we use supervised clustering to generate an initial set of membership functions for fuzzy rules. In our method both performance and complexity of fuzzy rules (or fuzzy decision trees) are taken into account in fitness evaluation. We also use evaluation with data partition, membership degree caching and zero-pruning to reduce time for construction and evaluation of fuzzy decision trees. For performance evaluation, we experimented with our method over the intrusion detection data of KDD'99 Cup, and confirmed that our method outperformed the existing methods. Compared with the KDD'99 Cup winner, the accuracy was increased by 1.54% while the cost was reduced by 20.8%.

Evaluation of Edge Detector′s Smoothness using Fuzzy Ambiguity (퍼지 애매성을 이용한 에지검출기의 평활화 정도평가)

  • Kim, Tae-Yong;Han, Joon-Hee
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.649-661
    • /
    • 2001
  • While the conventional edge detection can be considered as the problem of determining the existence of edges at certain locations, the fuzzy edge modeling can be considered as the problem of determining the membership values of edges. Thus, if the location of an edge is unclear, or if the intensity function is different from the ideal edge model, the degree of edgeness at the location is represented as a fuzzy membership value. Using the concept of fuzzy edgeness, an automatic smoothing parameter evaluation and selection method for a conventional edge detector is proposed. This evaluation method uses the fuzzy edge modeling, and can analyze the effect of smoothing parameter to determine an optimal parameter for a given image. By using the selected parameter we can detect least ambiguous edges of a detection method for an image. The effectiveness of the parameter evaluation method is analyzed and demonstrated using a set of synthetic and real images.

  • PDF

Nonlinear Process Modeling Using Hard Partition-based Inference System (Hard 분산 분할 기반 추론 시스템을 이용한 비선형 공정 모델링)

  • Park, Keon-Jun;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.4
    • /
    • pp.151-158
    • /
    • 2014
  • In this paper, we introduce an inference system using hard scatter partition method and model the nonlinear process. To do this, we use the hard scatter partition method that partition the input space in the scatter form with the value of the membership degree of 0 or 1. The proposed method is implemented by C-Means clustering algorithm. and is used for the initial center values by means of binary split. by applying the LBG algorithm to compensate for shortcomings in the sensitive initial center value. Hard-scatter-partitioned input space forms the rules in the rule-based system modeling. The premise parameters of the rules are determined by membership matrix by means of C-Means clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the coefficient parameters of each rule are determined by the standard least-squares method. The data widely used in nonlinear process is used to model the nonlinear process and evaluate the characteristics of nonlinear process.

A Fuzzy Morphological Neural Network : Principles and Implementation (퍼지 수리 형태학적 신경망 : 원리 및 구현)

  • Won, Yong-Gwan;Lee, Bae-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.3
    • /
    • pp.449-459
    • /
    • 1996
  • The main goal of this paper is to introduce a novel definition for fuzzy mathematical morphology and a neural network implementation. The generalized- mean operator plays the key role for the definition. Such definition is well suited for neural network implementation. The first stage of the shared-weight neural network has adequate architecture to perform morphological operation. The shared- weight network performs classification based on the features extracted with the fuzzy morphological operation defined in this paper. Therefore, the parameters for the fuzzy definition can be optimized using neural network learning paradigm. Learning rules for the structuring elements, degree of membership, and weighting factors are precisely described. In application to handwritten digit recognition problem, the fuzzy morphological shared-weight neural network produced the results which are comparable to the state-of art for this problem.

  • PDF