• Title/Summary/Keyword: member capacity

Search Result 500, Processing Time 0.028 seconds

Flexural Pinching and Energy Dissipation Capacity (휨핀칭과 에너지 소산능력)

  • 박흥근;엄태성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.275-285
    • /
    • 2003
  • Pinching is an important property of reinforced concrete member which characterizes its cyclic behavior. In the present study, numerical studies were performed to investigate the characteristics and mechanisms of pinching behavior and the energy dissipation capacity of flexure-dominated reinforced concrete members. By analyzing existing experimental studies and numerical results, it was found that energy dissipation capacity of a member is directly related to energy dissipated by re-bars rather than concrete that is a brittle material, and that it is not related to magnitude of axial compressive force applied to the member. Therefore, for a member with specific arrangement and amount of re-bars, the energy dissipation capacity remains uniform regardless of the flexural strength that is changed by the magnitude of axial force applied. Due to the uniformness of energy dissipation capacity pinching appears in axial compression member. The flexural pinching that is not related to shear force becomes conspicuous as the flexural strength increases relatively to the uniform energy dissipation capacity. Based on the findings, a practical method for estimating energy dissipation capacity and damping modification factor was developed and verified with existing experiments.

  • PDF

Evaluation of Strengthening Capacity of Axial Member Using Admixture-Modified Mortar (혼화재 첨가 모르터를 이용한 압축부재의 보강성능 평가)

  • 박준명;양동석;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.417-422
    • /
    • 2002
  • Strength and Durability of reinforced concrete exposed at deteriorated environment are decreased by cover spatting and corrosion of reinforcement. The purpose of this paper is to evaluate capacity of strengthening axial member using admixture-modified mortar. To investigate the capacity of strengthened axial member, behavior and strength of strengthening specimens were compared with a monolithic basic specimen. Admixture-modified mortar was prepared with silica fume, zeolite, polymer as cement modifier. From the result of this experiment, strengthening specimens using polymer-modified mortar have apparrent strengthening capacity because of good flexural strength and tensile strength.

  • PDF

A Case Study on Earthquake Resistant Reinforcement Method for the Corner of Existing Underground R.C Box Structures using Pre-flexed Member System (프리플렉스 부재를 이용한 기존 철근콘크리트 지중박스구조물 우각부에 대한 내진보강공법 사례연구)

  • Chung, Jee-Seung;Kim, Jin-Gu;Lee, Jin-Hyuk
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.68-74
    • /
    • 2016
  • This paper presents a new strengthening method of underground box structures against seismic loads for anti-seismic capacity improvement. A threaded steel member with pressure devices(so called 'Pre-flexed member system') is used to improve seismic capacity of the RC box structure. The pre-flexed member system is fixed the corner of opening after chemical anchor was installed by drilling hole on the box structure. The structural performance was evaluated analytically. Two bracing types of strengthening methods were used; conventional bracing method and I-bracing pressure system. For the performance evaluation, seismic analyses were performed on moment and shear resisting structures with and without strength member system. Numerical results confirmed that the proposed pre-flexed member system can enhance the seismic capacity of the underground RC box structures.

A Study on the Flexural Capacity of Wooden Member According to the Reinforcement Ratio of Synthetic Resin (합성수지의 보강비율에 따른 목재의 휨 보강 성능에 관한 연구)

  • Kang, Ho-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.91-98
    • /
    • 2017
  • Most of the cultural assets in Korea are wooden structures. Due to the material characteristics of wood, the preservation of traditional wooden structure is impossible by simple maintenance. Damaged member is replaced with new member or completely dissolve and restore them. But member has a cultural value, so that it is impossible to arbitrarily replace each member. Although the preservation treatment method using synthetic resin is emphasized, there is no exact standard for proper reinforcement ratio. This paper is experimental study for reinforcement ratio of wooden flexural member with synthetic resins, Reinforced ratio on section area of flexural member. As a result, synthetic resin reinforcement are selected as experimental variables by proper ratio enhanced flexural capacity of reinforced wooden member than new wooden member.

A Study on the Compressive Capacity of Wooden Member According to the Reinforcement Ratio of Synthetic Resin (합성수지의 보강비율에 따른 목재의 압축보강 성능에 관한 연구)

  • Kang, Ho-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.83-90
    • /
    • 2017
  • Preservation of wooden structure due to deterioration and corrosion is based on preservation of original form, and wooden member should not be arbitrarily replaced or damaged. Accordingly, preservation processing method with synthetic resins is embossed. But it has an adverse effect because there is no exact standard for the reinforcement ratio with the synthetic. This paper experimental study for reinforcement ratio of wooden compressive member with synthetic resins, Reinforced ratio on section area of compressive member and direction. As a result, synthetic resin reinforcement selected as experimental variables by proper ratio enhanced compressive capacity of reinforced wooden member, than new wooden member.

Sensitivity Analysis Related to Redundancy of Regular and Irregular Framed Structures after Member Disappearance

  • Ito, Takumi;Takemura, Toshinobu
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.297-304
    • /
    • 2014
  • Recently, there have been some reported examples of structural collapse due to gravity, subsequent to damage from accident or an excitation that was not prepared for in the design process. A close view of new concepts, such as a redundancy and key elements, has been taken with the aim of ensuring the robustness of a structure, even in the event of an unexpected disturbance. The author previously proposed a sensitivity index of the vertical load carrying capacity to member disappearance for framed structures. The index is defined as the ratio of the load carrying capacity after a member or a set of an adjacent member disappears, to the original load carrying capacity. The member with the highest index may be regarded as a key element. The concept of bio-mimicry is being applied to various fields of engineering, and tree-shaped structures are sometimes used for the design of building structures. In this study a sensitivity analysis is applied to the irregular-framed structures such as tree-shaped structures.

Difference of Deterioration According to Exposed Condition of Column in Wooden Traditional Building (노출 환경에 따른 목조 고건축물 기둥의 열화 차이)

  • Kim, Gwang-Chul;Bae, Mun-Sung;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.58-68
    • /
    • 2003
  • Capacity assessment of structural member must be ahead of the safety assessment of wooden traditional building. Capacity assessment of structural member has been dependent on empirical method with visual inspection even now. Safety assessment of building, however, can be more correct and reasonable provided non-destructive evaluation technique that scientific and logic would be used to evaluate the capacity of structural member. For that purpose, non-destructive evaluation technique was applied to column among many structural members of wooden traditional building to examine the possibility of capacity assessment of structural member. And then, those data will be used as a basic data for capacity assessment of structural member in a following study. Specially, deterioration progress levels of column according to exposed condition were measured. Similar results were obtained as compared with results of visual inspection, so there was a good possibility of application for non-destructive evaluation technique.

Modeling and prediction of buckling behavior of compression members with variability in material and/or section properties

  • Gadalla, M.A.;Abdalla, J.A.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.631-645
    • /
    • 2006
  • Buckling capacity of compression members may change due to inadvertent changes in the member section dimensions or material properties. This may be the result of repair, modification of section properties or degradation of the material properties. In some occasions, enhancement of buckling capacity of compression members may be achieved through splicing of plates or utilization of composite materials. It is very important for a designer to predict the buckling resistance of the compression member and the important parameters that affect its buckling strength once changes in section and/or material properties took place. This paper presents an analytical approach for determining the buckling capacity of a compression member whose geometric and/or material properties has been altered resulting in a multi-step non-uniform section. This analytical solution accommodates the changes and modifications to the material and/or section properties of the compression member due to the factors mentioned. The analytical solution provides adequate information and a methodology that is useful during the design stage as well as the repair stage of compression members. Three case studies are presented to show that the proposed analytical solution is an efficient method for predicting the buckling strength of compression members that their section and/or material properties have been altered due to splicing, coping, notching, ducting and corrosion.

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.

Experimental and numerical analyses on axial cyclic behavior of H-section aluminium alloy members

  • Wu, Jinzhi;Zheng, Jianhua;Sun, Guojun;Chang, Xinquan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.11-28
    • /
    • 2022
  • This paper considers the combination of cyclic and axial loads to investigate the hysteretic performance of H-section 6061-T6 aluminum alloy members. The hysteretic performance of aluminum alloy members is the basis for the seismic performance of aluminum alloy structures. Despite the prevalence of aluminum alloy reticulated shells structures worldwide, research into the seismic performance of aluminum alloy structures remains inadequate. To address this deficiency, we design and conduct cyclic axial load testing of three H-section members based on a reliable testing system. The influence of slenderness ratios and bending direction on the failure form, bearing capacity, and stiffness degradation of each member are analyzed. The experiment results show that overall buckling dominates the failure mechanism of all test members before local buckling occurs. As the load increases after overall buckling, the plasticity of the member develops, finally leading to local buckling and fracture failure. The results illustrate that the plasticity development of the local buckling position is the main reason for the stiffness degradation and failure of the member. Additionally, with the increase of the slenderness ratio, the energy-dissipation capacity and stiffness of the member decrease significantly. Simultaneously, a finite element model based on the Chaboche hybrid strengthening model is established according to the experiment, and the rationality of the constitutive model and validity of the finite element simulation method are verified. The parameter analysis of twenty-four members with different sections, slenderness ratios, bending directions, and boundary conditions are also carried out. Results show that the section size and boundary condition of the member have a significant influence on stiffness degradation and energy dissipation capacity. Based on the above, the appropriate material constitutive relationship and analysis method of H-section aluminum alloy members under cyclic loading are determined, providing a reference for the seismic design of aluminum alloy structures.