• Title/Summary/Keyword: member

Search Result 6,712, Processing Time 0.033 seconds

A Study on the Compressive Capacity of Wooden Member According to the Reinforcement Ratio of Synthetic Resin (합성수지의 보강비율에 따른 목재의 압축보강 성능에 관한 연구)

  • Kang, Ho-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.83-90
    • /
    • 2017
  • Preservation of wooden structure due to deterioration and corrosion is based on preservation of original form, and wooden member should not be arbitrarily replaced or damaged. Accordingly, preservation processing method with synthetic resins is embossed. But it has an adverse effect because there is no exact standard for the reinforcement ratio with the synthetic. This paper experimental study for reinforcement ratio of wooden compressive member with synthetic resins, Reinforced ratio on section area of compressive member and direction. As a result, synthetic resin reinforcement selected as experimental variables by proper ratio enhanced compressive capacity of reinforced wooden member, than new wooden member.

Structural Characteristics of Concrete Filled GFRP Composite Compression Member (콘크리트 합성 유리섬유 복합소재 압축부재의 거동특성)

  • 이성우;최석환;손기훈;김성태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.181-188
    • /
    • 2001
  • Due to many advantage of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member is studied. Through 4-point flexural test with various level of axial force, the performance of composite compression member was analyzed. Also numerical method to find P-M diagram of composite compression member was developed. It is demonstrated that result of numerical method agree well with experimental results.

  • PDF

Critical Load and Effective Buckling Length Factor of Dome-typed Space Frame Accordance with Variation of Member Rigidity (돔형 스페이스 프레임의 부재강성변화에 따른 임계좌굴하중과 유효좌굴길이계수)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.87-96
    • /
    • 2013
  • This study investigated characteristics of buckling load and effective buckling length by member rigidity of dome-typed space frame which was sensitive to initial conditions. A critical point and a buckling load were computed by analyzing the eigenvalues and determinants of the tangential stiffness matrix. The hexagonal pyramid model and star dome were selected for the case study in order to examine the nodal buckling and member buckling in accordance with member rigidity. From the numerical results, an effective buckling length factor of adopted models was bigger than that of Euler buckling for the case of fixed boundary. These numerical models indicated that the influence of nodal buckling was greater than that of member buckling as member rigidity was higher. Besides, there was a tendency that the bifurcation appeared on the equilibrium path before limit point in the member buckling model.

Topology Optimization of a Lightweight Multi-material Cowl Cross Member Using Matrix Input with the Craig Bampton Nodal Method

  • Son, Dong il;So, Sangwoo;Choi, Dong hyuk;Kim, Daeil
    • Composites Research
    • /
    • v.32 no.5
    • /
    • pp.243-248
    • /
    • 2019
  • As demand of light weight in the automotive industry has increased, the cowl cross member has been investigated using various methods to change the material. Conventionally, a cowl cross member has been made of steel and aluminum, but recently researchers tested multi-material such as aluminum and plastic. We studied a new model of the cowl cross member made of composite and non ferrous materials. For products with a high degree of freedom in design, generally, the method of topology optimization is advantageous and for the partial bracket part of the cowl cross member had a degree of freedom in the design, a topology optimization is appropriate. Considering the characteristics of the cowl cross members, we need research to minimize the weight while having the performance of noise, vibration and harshness(NVH). Taking the mounting status of the product into consideration, we used an assembly model to optimize the cowl cross member. But this method took too much time so we considered simple cowl cross member assemble conditions using the direct matrix input method(DMI) with the Craig-Bampton Nodal Method. This method is capable of considering the status of the assembly without assembling the model, which reduced the solving time and increased the accuracy comparison with a cowl cross member without DMI.

Axial Collapse Characteristics of Aluminum CFRP Compound Square Members for Vehicle Structural Members (차체구조부재용 알루미늄 CFRP 혼성사각부재의 축 압궤 특성)

  • Lee, Kil-Sung;Cha, Cheon-Seok;Pyeon, Seok-Beom;Yang, In-Young;Sim, Jae-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1329-1335
    • /
    • 2005
  • An aluminum or CFRP (Carbon Fiber ReinfDrced Plastics)is representative one of light-weight materials but its axial collapse mechanism is different from each other. The aluminum member absorbs energy by stable plastic deformation, while the CFRP member absorbs energy by unstable brittle failure with higher specific strength and stiffness than those in the aluminum member. In an attempt to achieve a synergy effect by combining the two members, aluminum CFRP compound square members were manufactured, which are composed of aluminum members wrapped with CFRP outside aluminum square members with different fiber orientation angle and thickness of CFRP, and axial collapse tests were performed fur the members. The axial collapse characteristics of the compound members were analyzed and compared with those of the respective aluminum members and CFRP members. Test results showed that the collapse of the aluminum CFRP compound member complemented unstable brittle failure of the CFRP member due to ductile characteristics of the inner aluminum member. The collapse modes were categorized into four modes under the iuluence of the fiber orientation angle and thickness of CFRP. The absorbed energy Per unit mass, which is in the light-weight aspect was higher in the aluminum CFRP compound member than that in the aluminum member and the CFRP member alone.

Concept Analysis of Mebership (회원지원 개념분석)

  • Choi, Sujin;Yang, Boksun;You, Hyangeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.735-744
    • /
    • 2021
  • This study is a concept analysis of membership, using the evolutionary concept analysis method. Literatures published from January 2000 to January 2020 were searched on CINAHL, EBSCO, and websites of professional associations, using keywords including 'Member support', 'Member welfare', 'Professional association', 'Membership', and 'Member benefit.' Finally, 12 articles and 4 professional association website data were selected for analysis. The antecedents of membership comprised two dimensions, viz., the member level, and the association level. The antecedent at the member level included need of members, whereas antecedent at the association level was to set up a new department responsible for memberships. Attributes of the membership included 'member support', 'member professionalization', and 'member solidarity'. The consequences of membership also consisted of two dimensions: increased member satisfaction and professionality, and enhancement of rights and interests at the member level, and improvement of public awareness for the professional association at the association level. The findings of this study suggest that providing proper membership is a desirable direction of the association's member support considering the member's opinion ultimately, and propose future research for membership development. This study significantly provides the contextual basis, by identifying the antecedents, attributes, and consequences of membership.

A Study on the Design of Front Side Member for Applied Tailor Welded Blanks (Tailor Welded Blanks 적용을 위한 Front Side Member의 설계기법 연구)

  • 강대철;전병희;전한수
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2001
  • The use of tailor welded blanks (TWB) in automotive applications is increasing due to the potential of weight and cost saving. The object of this study is development of the front side member by static analysis and crash simulations. Accord-ing to the results , energy absorption and barrier force is very important parameter to control passenger safety and deforma-tion shape. A energy absorbability point of view, tailor welded blanks is most effective to absorb energy than non-twb. Non-TWB front side member and TWB applied front side member were simulated. It shows reduce stmping parts weight reduction and cost down.

  • PDF

A Study on the Design Method of Passenger Car Type Front Side Member Using Tailor Welded Blanks (Tailor Welded Blanks를 이용한 승용차용 Front Side Member 설계기법 연구)

  • 이승희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.403-408
    • /
    • 2000
  • The use of tailor welded blanks(TWB) in automotive applications is increasing due to the potential of weight and cost saving In this study, the front side member of passenger car is developed by typical analysis and crash simulations. According this results, energy absorption and barrier force is very important to control passenger safety and deformation shape. For that purpose, it is most effective to absorb energy more tailor welded blanks front side member than non-twb. The front side member with twb is simulated, in which reduced stamping parts, weight reduction and cost down.

  • PDF

Bumper Stay Design for Improving Frontal Crash Performance of Front Body (전방 차체의 정면 충돌성능 향상을 위한 범퍼 스테이 설계)

  • Kang, Sungjong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.6 no.2
    • /
    • pp.5-11
    • /
    • 2014
  • Front side member of the front impacted vehicle plays a key role in minimizing the impacting load transferred to the compartment. To perform that required function, axial collapse should be dominant during side member crashing and, prior to designing side member, it is crucial to minimize bending moment occurred at the front end. In this study, for FE model of a SUV front body, front impact analyses were carried to find out bumper stay design which effectively develope axial collapse in the side member. As a previous work, the thickness of side member reinforcement were changed. Next, the inner thickness of bumper stay was increased. Also, the bead shape and location were modified. Final front body model showed much more axial collapsed mode and enhanced crash performance. In addition, a stay of octagon section was adopted and that model exhibited distinctive increase in impact energy absorption.