• 제목/요약/키워드: member

검색결과 6,725건 처리시간 0.04초

합성수지의 보강비율에 따른 목재의 압축보강 성능에 관한 연구 (A Study on the Compressive Capacity of Wooden Member According to the Reinforcement Ratio of Synthetic Resin)

  • 강호근
    • 한국공간구조학회논문집
    • /
    • 제17권3호
    • /
    • pp.83-90
    • /
    • 2017
  • Preservation of wooden structure due to deterioration and corrosion is based on preservation of original form, and wooden member should not be arbitrarily replaced or damaged. Accordingly, preservation processing method with synthetic resins is embossed. But it has an adverse effect because there is no exact standard for the reinforcement ratio with the synthetic. This paper experimental study for reinforcement ratio of wooden compressive member with synthetic resins, Reinforced ratio on section area of compressive member and direction. As a result, synthetic resin reinforcement selected as experimental variables by proper ratio enhanced compressive capacity of reinforced wooden member, than new wooden member.

콘크리트 합성 유리섬유 복합소재 압축부재의 거동특성 (Structural Characteristics of Concrete Filled GFRP Composite Compression Member)

  • 이성우;최석환;손기훈;김성태
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.181-188
    • /
    • 2001
  • Due to many advantage of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member is studied. Through 4-point flexural test with various level of axial force, the performance of composite compression member was analyzed. Also numerical method to find P-M diagram of composite compression member was developed. It is demonstrated that result of numerical method agree well with experimental results.

  • PDF

돔형 스페이스 프레임의 부재강성변화에 따른 임계좌굴하중과 유효좌굴길이계수 (Critical Load and Effective Buckling Length Factor of Dome-typed Space Frame Accordance with Variation of Member Rigidity)

  • 손수덕;이승재
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.87-96
    • /
    • 2013
  • This study investigated characteristics of buckling load and effective buckling length by member rigidity of dome-typed space frame which was sensitive to initial conditions. A critical point and a buckling load were computed by analyzing the eigenvalues and determinants of the tangential stiffness matrix. The hexagonal pyramid model and star dome were selected for the case study in order to examine the nodal buckling and member buckling in accordance with member rigidity. From the numerical results, an effective buckling length factor of adopted models was bigger than that of Euler buckling for the case of fixed boundary. These numerical models indicated that the influence of nodal buckling was greater than that of member buckling as member rigidity was higher. Besides, there was a tendency that the bifurcation appeared on the equilibrium path before limit point in the member buckling model.

Topology Optimization of a Lightweight Multi-material Cowl Cross Member Using Matrix Input with the Craig Bampton Nodal Method

  • Son, Dong il;So, Sangwoo;Choi, Dong hyuk;Kim, Daeil
    • Composites Research
    • /
    • 제32권5호
    • /
    • pp.243-248
    • /
    • 2019
  • As demand of light weight in the automotive industry has increased, the cowl cross member has been investigated using various methods to change the material. Conventionally, a cowl cross member has been made of steel and aluminum, but recently researchers tested multi-material such as aluminum and plastic. We studied a new model of the cowl cross member made of composite and non ferrous materials. For products with a high degree of freedom in design, generally, the method of topology optimization is advantageous and for the partial bracket part of the cowl cross member had a degree of freedom in the design, a topology optimization is appropriate. Considering the characteristics of the cowl cross members, we need research to minimize the weight while having the performance of noise, vibration and harshness(NVH). Taking the mounting status of the product into consideration, we used an assembly model to optimize the cowl cross member. But this method took too much time so we considered simple cowl cross member assemble conditions using the direct matrix input method(DMI) with the Craig-Bampton Nodal Method. This method is capable of considering the status of the assembly without assembling the model, which reduced the solving time and increased the accuracy comparison with a cowl cross member without DMI.

차체구조부재용 알루미늄 CFRP 혼성사각부재의 축 압궤 특성 (Axial Collapse Characteristics of Aluminum CFRP Compound Square Members for Vehicle Structural Members)

  • 이길성;차천석;편석범;양인영;심재기
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1329-1335
    • /
    • 2005
  • An aluminum or CFRP (Carbon Fiber ReinfDrced Plastics)is representative one of light-weight materials but its axial collapse mechanism is different from each other. The aluminum member absorbs energy by stable plastic deformation, while the CFRP member absorbs energy by unstable brittle failure with higher specific strength and stiffness than those in the aluminum member. In an attempt to achieve a synergy effect by combining the two members, aluminum CFRP compound square members were manufactured, which are composed of aluminum members wrapped with CFRP outside aluminum square members with different fiber orientation angle and thickness of CFRP, and axial collapse tests were performed fur the members. The axial collapse characteristics of the compound members were analyzed and compared with those of the respective aluminum members and CFRP members. Test results showed that the collapse of the aluminum CFRP compound member complemented unstable brittle failure of the CFRP member due to ductile characteristics of the inner aluminum member. The collapse modes were categorized into four modes under the iuluence of the fiber orientation angle and thickness of CFRP. The absorbed energy Per unit mass, which is in the light-weight aspect was higher in the aluminum CFRP compound member than that in the aluminum member and the CFRP member alone.

회원지원 개념분석 (Concept Analysis of Mebership)

  • 최수진;양복순;유향은
    • 한국산학기술학회논문지
    • /
    • 제22권3호
    • /
    • pp.735-744
    • /
    • 2021
  • 본 연구는 진화론적 개념 분석 방법을 이용한 회원지원 개념분석 연구이다. '회원지원', '회원복지', 'professional association', 'membership', 'member benefit'을 주요어로 입력하여 2000년 1월부터 2020년 1월까지 출판된 논문을 CINAHL, EBSCO등 국내외 데이터베이스와 웹사이트를 통해 검색하였다. 기준에 부합한 12개 논문, 4개의 전문직종 협회 자료가 선정되었다. 회원지원 개념의 선행요인은 회원 차원과 협회 차원으로 구분되고, 회원 차원의 선행요인은 회원의 요구, 협회 차원의 선행요인은 전담부서 마련이었다. 회원지원 개념의 속성은 '회원 지지화', '회원 전문화', '회원 연대화'였다. 회원지원 개념의 결과요인도 회원 차원과 협회 차원으로 구분되고, 회원차원의 결과요인은 회원의 만족도 증가, 전문성 강화, 권익 향상이며, 협회 차원의 결과요인은 협회에 대한 국민 인식 개선으로 나타났다. 협회지원에 관한 본 연구의 개념분석 결과는 회원들의 목소리와 요구를 수렴하고, 적절한 회원지원을 제공하는 것이 협회의 바람직한 회원지원 방향임을 제시하며, 회원들의 의견을 고려한 회원지원 모델개발 연구를 제언한다. 본 연구는 선행 문헌을 토대로 회원지원이라는 개념의 선행요인, 속성, 결과를 밝힘으로써 맥락적 근거를 마련하였다는 점에서 의의가 있다.

Tailor Welded Blanks 적용을 위한 Front Side Member의 설계기법 연구 (A Study on the Design of Front Side Member for Applied Tailor Welded Blanks)

  • 강대철;전병희;전한수
    • 한국공작기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.51-58
    • /
    • 2001
  • The use of tailor welded blanks (TWB) in automotive applications is increasing due to the potential of weight and cost saving. The object of this study is development of the front side member by static analysis and crash simulations. Accord-ing to the results , energy absorption and barrier force is very important parameter to control passenger safety and deforma-tion shape. A energy absorbability point of view, tailor welded blanks is most effective to absorb energy than non-twb. Non-TWB front side member and TWB applied front side member were simulated. It shows reduce stmping parts weight reduction and cost down.

  • PDF

Tailor Welded Blanks를 이용한 승용차용 Front Side Member 설계기법 연구 (A Study on the Design Method of Passenger Car Type Front Side Member Using Tailor Welded Blanks)

  • 이승희
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.403-408
    • /
    • 2000
  • The use of tailor welded blanks(TWB) in automotive applications is increasing due to the potential of weight and cost saving In this study, the front side member of passenger car is developed by typical analysis and crash simulations. According this results, energy absorption and barrier force is very important to control passenger safety and deformation shape. For that purpose, it is most effective to absorb energy more tailor welded blanks front side member than non-twb. The front side member with twb is simulated, in which reduced stamping parts, weight reduction and cost down.

  • PDF

전방 차체의 정면 충돌성능 향상을 위한 범퍼 스테이 설계 (Bumper Stay Design for Improving Frontal Crash Performance of Front Body)

  • 강성종
    • 자동차안전학회지
    • /
    • 제6권2호
    • /
    • pp.5-11
    • /
    • 2014
  • Front side member of the front impacted vehicle plays a key role in minimizing the impacting load transferred to the compartment. To perform that required function, axial collapse should be dominant during side member crashing and, prior to designing side member, it is crucial to minimize bending moment occurred at the front end. In this study, for FE model of a SUV front body, front impact analyses were carried to find out bumper stay design which effectively develope axial collapse in the side member. As a previous work, the thickness of side member reinforcement were changed. Next, the inner thickness of bumper stay was increased. Also, the bead shape and location were modified. Final front body model showed much more axial collapsed mode and enhanced crash performance. In addition, a stay of octagon section was adopted and that model exhibited distinctive increase in impact energy absorption.