• Title/Summary/Keyword: melting slag

Search Result 90, Processing Time 0.036 seconds

Distribution Characteristics of Radionuclies (60Co, 137Cs) During the Melting of Radioactive Metal Waste (방사성 금속폐기물의 용융시 방사성 핵종(60Co, 137Cs)의 분배특성)

  • Min, Byung Youn;Choi, Wang Kyu;Oh, Won Zin;Jung, Chong Hun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.627-632
    • /
    • 2007
  • A fundamental study on the melt decontamination of metal wastes generated by dismantling the nuclear facility, the melting of metal wastes such as stainless steel and carbon steel have been carried out to investigate the distribution phenomena of the radioisotopes such as $^{60}Co$ and $^{137}Cs$ into the ingot, slag and dust phases by using the various slag types, slag concentration and basicity in an arc furnace. The $^{60}Co$ remained homogeneously in the ingot phase above 90 % and it was barely present in the slag below 10 %. The effect of the slag composition on the distribution for Co-60 was not considerable, but a basic slag former with high fluidity showed effective. $^{137}Cs$ was completely eliminated from the melt of the stainless steel as well as the carbon steel and distributed to the slag and the dust phase.

Acid Treatment of Melting Slag and Its Hydrothermal Reaction (산처리한 생활폐기물 용융슬래그의 수열반응 특성)

  • Lee, Sung-Ki;Jang, Young-Nam;Chae, Soo-Chun;Ryu, Kyoung-Won;Bae, In-Kook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.267-275
    • /
    • 2007
  • Melting slag generated from municipal-incinerator ash contains lots of impurities which have adverse effects on zeolite synthesis. These impurities are detrimental to zeolite synthesis, and the yield and purity of zeolite was decreased. And thus its performance is lowered. In melting slag, there are lots of components such as $Fe_2O_3$, FeO and CaO. To remove these impurities, we treated the melting slag with hydrochloric acid at initial pH 1, 3, 5, and 7. After the treatment, the $SiO_2,\;Fe_2O_3,\;and\;TiO_2$ ratios increased, but the $Al_2O_3,\;FeO,\;CaO,\;Na_2O$ and MgO ratios decreased. We reacted these treated slag in a NaOH solution under hydrothermal conditions at $80^{\circ}C$. The hydrothermal products from the slag and the slag treated at pH 7 and pH 5 were determined to be tobermorite, whereas those at pH 3 and pH 1, Na-P1 and Na-X zoelite respectively. CaO was found to inhibit the synthesis of zeolite.

The Worldwide Trend of waste Treatment Technology and DAEWOO-TS Gasification & Melting System (세계의 폐기물처리기술 동향과 DAEWOO-TS 열분해 가스화 용융기술)

  • 허일상;김우봉
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.2
    • /
    • pp.103-114
    • /
    • 2001
  • Worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary for our country to adopt gasification & melting system urgently to present the land pollution and lack of landfill area. Among several gasification and melting processes Daewoo-Thermoselect gasification and melting system is the representative process which can transfer waste to resources such as sin-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, degasification, gasification and melting.

  • PDF

A study on recovery of Platinum Group Metals(PGMs) from spent automobile catalyst by melting technology (용융기술(熔融技術)을 이용(利用)한 자동차폐촉매(自動車廢觸媒)에서의 백금족(白金族) 금속(金屬) 회수(回收) 연구(硏究))

  • Park, Hyun-Seo
    • Resources Recycling
    • /
    • v.20 no.2
    • /
    • pp.74-81
    • /
    • 2011
  • The dry method and wet method are currently used for the recovery of platinum group metals (Pt, Rh, Pd) contained in spent automobile catalysts. The study herein aims to identify the melting condition and optimum collector metal in accordance with a comparison of each concentration change in melting waste catalysts, using Fe and Cu in a basic experiment to recover waste catalysts through application of the dry melting method. As a summarized result of the experiment herein, it was determined to be more advantageous to use Fe as a parent material rather than Cu from the aspect of recollection rate, and the concentration change rate of platinum group metals within slag was greatly enhanced at $1,600^{\circ}C$ melting condition rather than at $1,500^{\circ}C$ in terms of melting processing temperature. The mean concentration of platinum group metals - Rh, Pd and Pt - within slag after a melting process at $1,600^{\circ}C$ were 6.21 ppm, 5.98 ppm and 6.97 ppm. The Rh and Pd were 50.58% and 55.31% respectively greater than the concentration change rate of platinum group metals in slag at a melting temperature of $1,500^{\circ}C$. However, since the initial concentration of Pt within the waste catalysts was 12.9 ppm, is relatively low, it was difficult to compare concentration change rates after the melting process.

Slagging treatment of MSW incineration ash by plasma system (플라즈마를 이용한 도시 쓰레기 소각재 용융처리 기술)

  • 박현서;지규일;장준섭;전석구;배희주;김형진;이시창;주성준;신범수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.65-68
    • /
    • 1999
  • A plasma melting system to vitrify ny ash from MSW(Municipal Solid Waste) incinerator has been operated in SHI(Samsung Heavy Industries) since 1996. Waste feeding rate was 200kg/hr. with maximum working power of 500㎾. Because of high melting temperature of fly ash, bottom ash was used as an additive to decrease melting temperature. Data analysis for discharged slag shows volume reduction up to 30% and no leaching of heavy metals such as Pb, Cd, Cr which were an obstacle for landfill and recycle. Atmospheric pollution gas like nitrogen oxides, carbon monoxide, and PCDD/PCDF were restrained below the regulatory limit.

  • PDF

The Gasification & Melting Treatment Technology of Waste (폐기물 열분해 가스화용융 기술)

  • Huh, Il-Sang
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.133-138
    • /
    • 2005
  • The worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary to adopt gasification & melting system to prevent the land pollution and to solve the problem of landfill area. Among several thermal waste treatment processes gasification and melting system is the representative process which can transfer waste to resources such as syn-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, pyrolysis, gasification and melting.

  • PDF

PARTITIONING RATIO OF DEPLETED URANIUM DURING A MELT DECONTAMINATION BY ARC MELTING

  • Min, Byeong-Yeon;Choi, Wang-Kyu;Oh, Won-Zin;Jung, Chong-Hun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.497-504
    • /
    • 2008
  • In a study of the optimum operational condition for a melting decontamination, the effects of the basicity, slag type and slag composition on the distribution of depleted uranium were investigated for radioactively contaminated metallic wastes of iron-based metals such as stainless steel (SUS 304L) in a direct current graphite arc furnace. Most of the depleted uranium was easily moved into the slag from the radioactive metal waste. The partitioning ratio of the depleted uranium was influenced by the amount of added slag former and the slag basicity. The composition of the slag former used to capture contaminants such as depleted uranium during the melt decontamination process generally consists of silica ($SiO_2$), calcium oxide (CaO) and aluminum oxide ($Al_2O_3$). Furthermore, calcium fluoride ($CaF_2$), magnesium oxide (MgO), and ferric oxide ($Fe_2O_3$) were added to increase the slag fluidity and oxidative potential. The partitioning ratio of the depleted uranium was increased as the amount of slag former was increased. Up to 97% of the depleted uranium was captured between the ingot phase and the slag phase. The partitioning ratio of the uranium was considerably dependent on the basicity and composition of the slag. The optimum condition for the removal of the depleted uranium was a basicity level of about 1.5. The partitioning ratio of uranium was high, exceeding $5.5{\times}10^3$. The slag formers containing calcium fluoride ($CaF_2$) and a high amount of silica proved to be more effective for a melt decontamination of stainless steel wastes contaminated with depleted uranium.

Melting and Refining of Cu Powder Scraped from Waste PCB with Fe2O3 (Fe2O3 첨가에 의한 폐PCB로부터 긁어낸 Cu분말의 용융 및 정제)

  • Heo, Su-Bin;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.26 no.4
    • /
    • pp.95-100
    • /
    • 2017
  • In this study, $Fe_2O_3$ was added as a flux to decrease melting temperature and refine during melting of Cu powder from scraped surface of the waste PCB (printed circuit board). The effect of $Fe_2O_3$ ratio to Cu powder and temperature on the recovery of Cu and content of impurities were investigated. It was found that the recovery of Cu was increased with increasing addition ratio of $Fe_2O_3$ and reaction temperature. The contents of O, Si and Fe in Cu phase were also decreased with increasing addition ratio of $Fe_2O_3$ and temperature. The formation of fayalite ($2FeO{\cdot}SiO_2$) and iron oxides phases in the slag was confirmed by XRD analysis after reaction with $Fe_2O_3$. Therefore, it was considered that the decrease of melting temperature and viscosity of slag by formation of fayalite slag contributed remarkably to the Cu recovery.

Treatment of Industrial Wastes by Melting Using H.F. Induction Furnace (고주파 유도로를 이용한 산업 폐기물의 용융처리)

  • 정진기;정헌생;이재천;윤인주;남기대
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.23-28
    • /
    • 1997
  • Iron and slag were prepared by melting mixed industrial wastes in an induction furnace. The wastes were steel can, limestone sludge, waste foundry sand, coal fly ash, and glasses. The effects of their mixing ratio on the charactenstics of the meltcd slag were investigated. The wastes were melted to slag under the constant basicity of 1.2. It was found that the major phases of the slag were P-C,S and C,AS and then ratio was determined by the mixing ratio af waste materials. The recovery of iron was about 93-95%. The feasibility of using the slag as the aggregate was confirmed by thc elution and campression tests.

  • PDF

Hydration of Modified Converter Slag (개질한 전노슬래그의 수화반응)

  • 엄태선;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.157-162
    • /
    • 1981
  • A converter slag has been heat-treated above melting point at reduced condition by cokes. As the result, most iron was separated. To make hydraulic compounds, calcium oxide was added to the reduced converter slag and the mixtures were sintered. This modified converter slag clinker mainly contained tricalcium silicate and calcium aluminates, and have a great potential to be a good hydraulic cement. The hydrates of the hydraulic compounds and gypsum with and without granulated slags, were mainly C-S-H, ettringite, calcium monosulfoaluminate hydrate, calcium aluminate hydrate, and $Ca(OH)_2$

  • PDF