• Title/Summary/Keyword: melt-spining

Search Result 4, Processing Time 0.024 seconds

Fabricatin and Hydrogen Storage Property of Mg-33.5%Ni Alloy Powder Prepared by Melt-Spining Process (Melt-spining 공법에 의한 Mg-33.5%Ni 수소 저장 합금 제조 및 수소저장 특성)

  • Hong, Seong-Hyeon;Yim, Chang-Dong;Bae, Jong-Soo;Na, Young-Sang
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.399-405
    • /
    • 2007
  • The hyper-eutectic Mg-33.5%Ni alloy was rapidly solidified by melt spinning process. The melt-spun Mg-33.5%Ni has amorphous structure and crystallization occurred above $162^{\circ}C$. The hydriding and dehydriding rates of melt-spun Mg-33.5%Ni increased with cycle and high rate of hydrogen storage occurred at 3rd cycle. The maximum hydrogen amount absorbed in melt-spun Mg-33.5%Ni at $300^{\circ}C$ is about 4.5%.

Hydrogen Embrittlement and Surface Properties of Pd-coated Zr-based Amorphous Alloys (Pd 코팅된 Zr기 비정질 합금의 수소취성 및 표면특성)

  • Seok, Song;Lee, Dock-Young;Kim, Ki-Bae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.2
    • /
    • pp.182-188
    • /
    • 2007
  • [ $Zr_{50}-Ni_{27}-Nb_{18}-Co_5$ ] amorphous alloys ribbon was prepared by a single-roller melt-spinning technique. In order to improve the hydrogen kinetics Pd-coating were carried out on each side of the amorphous ribbon. Pd prevents oxidation of Zr and catalyses the dissociation of molecular hydrogen to atomic hydrogen. In this work, the hydrogen embrittlement and surface properties on Zr-based amorphous alloys were investigated. The Zr-based amorphous alloys were characterized by X-ray diffractometry(XRD) and differential scanning calorimetry(DSC). The morphology of surface and roughness was observed by using scanning electron microscopy(SEM) and atomic force microscopy (AFM). A lattice parameter of both Pd and Zr-based amorphous alloy was increased after hydrogen permeation at 473 K. After hydrogen permeation at 473 K, some cracks were observed on the surface of Pd, which was the cause for the hydrogen embrittlement. The crystallization temperature of Zr-based amorphous alloy was decreased due to the permeated hydrogen.

Characterization of Electrospun Nylon 66 Fiberwebs (전기방사 나일론 66 섬유웹의 특성화)

  • Lee, Young-Soo;Park, Sung-Shin;Lee, Chung-Jung;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.165-168
    • /
    • 2003
  • Nylon was the first commercialized synthetic fiber. It is a polyamide, derived from a diamine and dicarboxylic acid. The nylon fiber has outstanding durability and excellent physical properties such as stiffness, wear and abrasion resistance, friction coefficient and chemical resistance. Due to these properties of nylon 66, nano-sized fibers are produced by electrospinning method in this study. During the past years the nylon 66 fibers have been prepared by conventional melt spining. (omitted)

  • PDF