• 제목/요약/키워드: melt processing

검색결과 240건 처리시간 0.019초

Boron nitride based processing aids

  • Hatzikiriakos, Savvas G.;Rathod, Nimish
    • Korea-Australia Rheology Journal
    • /
    • 제15권4호
    • /
    • pp.173-178
    • /
    • 2003
  • Boron nitride is a new processing aid that is capable of eliminating gross melt fracture in several polymer processing operations. Its combinations with other processing aids i.e. fluoropolymers offer additional possibilities of obtaining enhanced processing aids that may take the processes to rates not realized before. A variety of different such combinations are discussed in this paper. The essential componenets are (1) boron nitride capable of eliminating gross melt fracture and (2) suitable lubricant capable of eliminating surface melt fracture such as stearates for the polyolefin processing and polyethylenes for the processing of fluoropolymers.

Chemical Modification of Isotactic Polypropylene by Melt Blending

  • Kim, Jun-Young;Seo, Eun-Su;Park, Dae-Soon;Park, Kwang-Min;Kang, Seong-Wook;Lee, Chang-Hyung;Kim, Seong-Hum
    • Fibers and Polymers
    • /
    • 제4권3호
    • /
    • pp.107-113
    • /
    • 2003
  • The branched polypropylene (b-PP) was prepared by melt blending process with initiator, antioxidant, and functional monomers to improve the melt strength through the melt grafting. The melt flow index (MFI) of the b-PP was increased with increasing the initiator content. On the introduction of the alkylamine as the branching agents the MFI of the b-PP was increased, while that of the b-PP with the pentaerythritol triacrylate (PT) was decreased. It may be caused by the chain scission of the i-PP backbone due to the reduced thermal stability of the i-PP on the melt blending. The MFI of the b-PP without the antioxidant was increased due to the chain scission occurred during the melt processing, while on the introduction of the antioxidant, the MFI of the b-PP was decreased. The crystallization temperature of the b-PP was higher than that of PP, which was attributed to the branched chain structure. It was found that the PT was the most effective functional monomers for enhancing the melt properties of the b-PP.

용융 점도 조절에 의한 나일론6의 가공특성 연구 (Processing Characteristics of Nylon 6 by Controlling the Melt Viscosity)

  • 김효갑;김준경;임순호;이건웅;박민;강호종
    • 폴리머
    • /
    • 제29권6호
    • /
    • pp.565-570
    • /
    • 2005
  • 용융 점도 조절에 의한 나일론6(N6)의 melt impregnation공정에서의 용융가공 특성에 대하여 고찰하여 보았다. N6의 용융 점도를 조절하기 위하여 calcium stearate(CaST)를 윤활제로 사용한 결과, 1 wt$\%$의 윤활제의 첨가에 의하여 용융 점도가 감소함을 알 수 있었다. 아울러 폴리카프로락톤(PCL)을 N6에 반응 용융 블렌딩하여 N6의 용융 점도를 낮출 수 있었으며 phenyl phosphite(PP)와 diphenyl phosphite(DPP)를 첨가하여 블렌딩 시 상호에스테르 교환반응을 증가시켜 추가적인 용융 점도 감소를 확인하였다. 이러한 방법들은 N6의 고온 가공의 문제점으로 지적되는 열안정성 저하를 최소화하면서 melt impregnation 공정에서 필수적인 저점도 가공을 가능하게 할 수 있을 것으로 사료된다.

Eutectic Ceramic Composites by Melt-Solidification

  • Goto, Takashi;Tu, Rong
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.331-339
    • /
    • 2019
  • While high-temperature ceramic composites consisting of carbides, borides, and nitrides, the so-called ultra-high-temperature ceramics (UHTCs), have been commonly produced through solid-state sintering, melt-solidification is an alternative method for their manufacture. As many UHTCs are binary or ternary eutectic systems, they can be melted and solidified at a relatively low temperature via a eutectic reaction. The microstructure of the eutectic composites is typically rod-like or lamellar, as determined by the volume fraction of the second phase. Directional solidification can help fabricate more sophisticated UHTCs with highly aligned textures. This review describes the fabrication of UHTCs through the eutectic reaction and explains their mechanical properties. The use of melt-solidification has been limited to small specimens; however, the recently developed laser technology can melt large-sized UHTCs, suggesting their potential for practical applications. An example of laser melt-solidification of a eutectic ceramic composite is demonstrated.

멜트블로운 부직포 제조공정이 유흡착포의 특성에 미치는 영향 (Effect of Manufacturing Conditions on the Properties of Oil-absorbable Melt Blown Nonwoven)

  • 신현세;김로;유주환
    • 한국염색가공학회지
    • /
    • 제21권6호
    • /
    • pp.22-28
    • /
    • 2009
  • Oil-absorbable nonwovens were produced by melt-blown processing of polypropylene chips. The melt-blown processing conditions, such as air pressure, and gear pump speed, DCD. In this study, these three factors were chosen to produce samples. Experimental array and variance analysis of the design of experiment were used to increase the field repeatability and universality. The effect of the factors on oil absorption properties of melt-blown nonwoven fabric such as oil absorbency were evaluated. As a result, the fiber diameter decreased as gearpump speed decreased or air pressure increased. The oil absorbency increased as air pressure increased or gearpump speed decreased and with the DCD increasing the oil absorbency significantly increased.

Effects of Filler Characteristics and Processing Conditions on the Electrical, Morphological and Rheological Properties of PE and PP with Conductive Filler Composites

  • Kim, Youn-Hee;Kim, Dong-Hyun;Kim, Ji-Mun;Kim, Sung-Hyun;Kim, Woo-Nyon;Lee, Heon-Sang
    • Macromolecular Research
    • /
    • 제17권2호
    • /
    • pp.110-115
    • /
    • 2009
  • The electrical, morphological and rheological properties of melt and dry mixed composites of poly ethylene (PE)/graphite (Gr), polypropylene (PP)/Gr and PP/nickel-coated carbon fiber (NCCF) were investigated as a function of filler type, filler content and processing temperature. The electrical conductivities of dry mixed PP/NCCF composites were increased with decreasing processing temperature. For the melt mixed PP/NCCF composites, the electrical conductivities were higher than those of the melt mixed PE/Gr and PP/Gr composites, which was attributed to the effect of the higher NCCF aspect ratio in allowing the composites to form a more conductive network in the polymer matrix than the graphite does. From the results of morphological studies, the fillers in the dry mixed PP/NCCF composites were more randomly dispersed compared to those in the melt mixed PP/NCCF composites. The increased electrical conductivities of the dry mixed composites were attributed to the more random dispersion of NCCF compared to that of the melt mixed PP/NCCF composites. The complex viscosities of the PP/Gr composites were higher than those of the PP/NCCF composites, which was attributed to the larger diameter of the graphite particles than that of the NCCF. Furthermore, the fiber orientation in the 'along the flow' direction during melt mixing was attributed to the decreased complex viscosities of the melt mixed PP/NCCF composites compared those of the melt mixed PP/Gr composites.

Structure-property relationship of melt intercalated maleated polyethylene nanocomposites

  • Reddy, M.M.;Gupta, Rahul K.;Bhattacharya, S.N.;Parthasarathy, R.
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.133-139
    • /
    • 2007
  • Low density polyethylene nanocomposites were prepared by melt intercalating maleic anhydride grafted polyethylene and montmorillonite clay. It has been found that maleic anhydride has promoted strong interactions between polyethylene and montmorillonite, leading to the homogeneous dispersion of clay layers. Rheological experiments revealed that prepared nanocomposites exhibited shear thinning behaviour. Polyethylene nanocomposites exhibited an increase in steady shear viscosities compared to virgin polyethylene owing to strong polymer clay interactions. The tensile strength of nanocomposites was improved but elongation at break decreased considerably. Also, barrier properties improved significantly with montmorillonite content.

열방성 액정고분자 강화 폴리에스터 블렌드 섬유의 특성 (Characterization of TLCP Reinforced Polyester Blend Fibers)

  • Kim, Jun-Young;Kim, Seong-Hun
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.223-226
    • /
    • 2003
  • Due to the potential application to ultra-high strength fibers and excellent properties such as high mechanical properties, excellent thermal endurance and chemical stability, thermotropic liquid crystal polymers (TLCPS) are attractive in recent years [1, 2]. Furthermore, the melt blends of TLCPS and conventional thermoplastics have been extensively investigated because of their easy processing and high performance [3-6]. Since high performance polymers generally has high melt viscosity, introduction of the relatively low viscosity components may be one of the more effective techniques to improve processability through the decrement of melt viscosity in melt processing. (omitted)

  • PDF

종자결정성장법으로 제조한 YBCO 초전도체의 자기 부상력과 포획자력 특성 (Levitation force and trapped magnetic field of top-seeded melt growth processed YBCO superconductors)

  • 김찬중;홍계원
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2001년도 학술대회 논문집
    • /
    • pp.139-141
    • /
    • 2001
  • YBCO superconductors were prepared by top-seeded melt growth process using various numbers of seeds. The levitation forces and trapped magnetic fields of the top surfaces of the samples were measured using Nd-B-Fe permanent magnets It was found that the processing time was greatly reduced by multiple seeding, but the properties were decreased as the number of seeds was increased. The degradation of the properties is attributed to the presence of the nonsuperconducting phases at the grain boundaries as result of the entrapment of a residual melt at grain boundaries during melt processing.

  • PDF