• Title/Summary/Keyword: melt blend

Search Result 112, Processing Time 0.023 seconds

Melt Rheology of Ethylene 1-Octene Copolymer Blends Synthesized by Ziegler-Natta and Metallocene Catalysts

  • Kim, Hak-Lim;Dipak Rana;Hanjin Kwag;Soonja Choe
    • Macromolecular Research
    • /
    • v.8 no.1
    • /
    • pp.34-43
    • /
    • 2000
  • The melt rheology of four binary blends of ethylene 1-octene copolymers (EOCs) which consist of one component by Ziegler-Natta and another by metallocene catalysts, was studied to elucidate miscibility in the melt by using torsion rheometer at 200$\^{C}$ and different shear rates. The four blend systems, designated into the FA+FM, SF+FM, RF+EN, and RF+PL blend, are divided and interpreted based on the melt index (MI), the density and the comonomer contents. The melt viscosity such asη', η", and η$\^$*/ is weight average value if the comonomer contents are similar, otherwise they show different manner. The experimental resole are analyzed based on the Cole-Cole plot of logη' uersus log η", the logarithmic plots of the dynamic storage modulus (G') versus the dynamic loss modulus (G") for various blend compositions, and the melt viscosity of 11', n", and f" as a function of blend compositions. As a cerise-quence, the FA+FM blend is miscible, but the SF+FM, RF+EN, and RF+PL blends are not in the melt. Thus miscibility of the blends studied in this communication is suggested to strongly influence by the comonomer contents rather than the density or the MI.

  • PDF

Preparation and Characterizations of Polymethylmethacrylate (PMMA)/Acrylate Rubber (ACM) Blend for Light Diffuser Applications

  • Lee, Byung Hwan;Chang, Young-Wook;Lim, Hyung Mi
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.49-54
    • /
    • 2015
  • Dynamically vulcanized PMMA/ACM (80 wt%/20 wt%) blend using DCP as a curing agent was prepared using internal mixer. The morphology, mechanical properties, optical properties, melt viscosity and die swell were characterized by using FE-SEM, tensile test, Izod impact test, dynamic mechanical analysis, ARES and capillary rheometer, respectively. The blends show a phase-separated morphology in which ACM are dispersed in PMMA matrix. Dynamically vulcanized blend exhibits higher mechanical properties, higher melt viscosity, and die swell as compared to simple blend. And, the dynamically vulcanized blend showed total transmittance of more than 75% and haze of higher than 90%, which enable it to find potential applications to fabricate an optical diffuser by extrusion process.

A Study on the Preparation and Flame Retardancy of Compatibilized Blend/Layered Silicate Nanocomposites with Inorganic Flame Retardant (무기계난연제 첨가형 상용화블렌드/층상실리케이트 나노복합재료의 제조 및 난연특성에 관한 연구)

  • Kang, Young-Goo;Song, Jong-Hyeok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.1 s.73
    • /
    • pp.79-85
    • /
    • 2006
  • Olefinic compatibilized blend(R-PP/R-PE)/layered silicate composites have been prepared by melt intercalation technique directed from $Na^{+}$ montmorillonite(MMT) or organophilic montmorillonites while using magnesium hydroxide as flame retardant. Morphology and flammability properties were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM), scanning electron microscopy(SEM), thermogravimetry analysis(TGA), limiting oxygen index(LOI), UL94 test. It is found that the compatibilized blend/layered silicate(Cloisite 20A) nanocomposites have a mixed immiscible-intercalated structure and there is better intercalation when a compatibilizer is combined with the polymer and layered silicate to be melt blended. A very large increase in the LOI value was observed with hybrid filler addition and further enhancement in thermal stability and compatibility of blend was obtained for the compatibilized blend containing small amount of layered silicate.

Effects of Annealing on Structure and Properties of TLCP/PEN/PET Ternary Blend Fibers

  • Kim, Jun-Young;Seo, Eun-Su;Kim, Seong-Hun;Takeshi Kikutani
    • Macromolecular Research
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2003
  • Thermotropic liquid crystalline polymer (TLCP)/poly(ethylene 2,6-naphthalate) (PEN)/poly(ethylene terephthalate) (PET) ternary blends were prepared by melt blending, and were melt-spun to fibers at various spinning speeds in an effort to improve fiber performance and processability. Structure and property relationship of TLCP/PEN/PET ternary blend fibers and effects of annealing on those were investigated. The mechanical properties of ternary blend fibers could be significantly improved by annealing, which were attributed to the development of more ordered crystallites and the formation of more perfect crystalline structures. TLCP/PEN/PET ternary blend fibers that annealed at 18$0^{\circ}C$ for 2 h, exhibited the highest values of tensile strength and modulus. The double melting behaviors observed in the annealed ternary blend fibers depended on annealing temperature and time, which might be caused by different lamellae thickness distribution as a result of the melting-reorganization process during the DSC scans.

Effect of Acrylonitrile Content on the Glass Transition Temperature and Melt Index of PVC/SAN Blends

  • Liu Wang;Kim Hwan-Chul;Pak Pyong-Ki;Kim Jong-Chun
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.36-41
    • /
    • 2006
  • PVC and SAN are often mixed to compensate for the disadvantages of each polymer. Miscibility and thermal stability of PVC/SAN blend were investigated in this study by blending SAN polymer having 20, 24, 28, 32 % of acrylonitrile contents. Two polymers were mixed using a melt blending method with a single screw extruder. DSC thermogram was used to evaluate miscibility of the two polymers. SAN having 24 % of acrylonitrile showed the best miscibility with PVC. In order to evaluate degradation behavior, blended polymer was heat treated in DSC furnace and glass transition temperature was measured consecutively. Glass transition temperature increased continuously with annealing time due to degradation and cross-linking of polymer chains. Melt index of blended polymer was always higher than that of PVC.

Processability Enhancement in Melt Processing of Poly(ethylene naphthalate) (폴리(에틸렌 나프탈레이트)의 가공 특성 향상 연구)

  • Kim Hyogap;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.475-480
    • /
    • 2005
  • The lowering of melt viscosity has been investigated to achieve the processability enhancement in poly(ethylene naphthalate) (PEN) melt processing by the reactive melt blending with poly(ethylene terephthalate) (PET) and introducing lubricant as well. CaST lubricant resulted in the lowering of PEN melt viscosity but noticeable mechanical property drop was found in PEN with more than $2wt\%$ of lubricant due to the acceleration of thermal degradation by excess lubricant. PEN/PET (90/10) blend has less melt viscosity than PEN and transesterification between two polymers caused the additional viscosity depression. further viscosity lowering was found in PEN/PET blend with CaST since CaST is acting as the catalyst of transesterification as well as a lubricant in PEN/PET blend.

Thermal Properties of Poly(trimethylene terephthalate)/ Poly(ethylene terephthalate) Melt Blends

  • Son, Tae Won;Kim, Kwang Il;Kim, Nam Hun;Jeong, Min Gi;Kim, Young Hun
    • Fibers and Polymers
    • /
    • v.4 no.1
    • /
    • pp.20-26
    • /
    • 2003
  • The thermal behavior, morphology, ester-interchange reaction of Poly(trimethylene terephthalate) (PTT)/poly(ethylene terephthalate) (PET) melt blends were investigated over the whole composition range(xPTT/(1-x)PET) using a twinscrew Brabender. The melt blends were analyzed by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy ($^{13}{C-NMR}$), and scanning electron microscopy (SEM). Single glass transition temperature ($T_g$) and cold crystallization temperature ($T_cc$) were observed in all melt blends. Melt blends were found to be due to the ester-interchange reaction in PTT/PET blend. Also the randomness of copolymer increases because transesterification between PT and PET increases with increasing blending time This reaction increases homogeneity of the blends and decreases the degree of crystallinity of the melt blends. In PTT-rich blends, mechanical properties decrease with increase of PET content compared with that of pure PTT. And, in PET-rich blends, tensile modulus decreases with increase of PTT content, but tensile strength and elongation is similar to that of pure PET.

Morphology and mechanical properties of LDPE/PS blends prepared by ultrasound-assisted melt mixing

  • Ryu, Joung Gul;Kim, Hyungsu;Kim, Myung Ho;Lee, Jae Wook
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.147-152
    • /
    • 2004
  • Ultrasound-assisted melt mixing was applied to blending polystyrene (PS) and low density polyethylene(LDPE). The influence of the ultrasonic irradiation on the morphology and mechanical properties of the blends was investigated. It was observed that the domain sizes of the blend were significantly reduced and phase stability was well sustained even after a thermal treatment. Such morphological feature was consistent with the improvements in mechanical performance of the blends. The desirable results of ultrasonic compatibilization are mainly attributed to the in-situ formation of PS-LDPE copolymers as confirmed by a proper separation experiment. An important relationship between ultrasonic irradiation time and mechanical properties is revealed and an issue on the thermal stability of the blend is discussed.

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend (3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향)

  • Kim, Tae Hyun;Chang, Young-Wook;Lee, Yong Woo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • 3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.

Effect of In Vitro Degradation on the Weight Loss and Tensile Strength of PLA/PEG Melt Blend Fiber (In Vitro 분해가 PLA/PEG 용융블렌드 섬유의 무게감량률 및 인장강도에 미치는 영향)

  • Yoon, Cheol-Soo;Ji, Dong-Sun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.581-587
    • /
    • 2009
  • PLA/PEG blend fibers composed of poly (lactic acid) (PLA) and poly (ethylene glycol) (PEG) were prepared via melt blending and spinning for bioabsorbable filament sutures. The blend fibers hydrolyzed with the immersion in a phosphate buffer solution at pH 7.4 and $37\;^{\circ}C$ for 1~8 weeks. The effects of blending time, blend composition, and hydrolysis time on the weight loss and tensile strength of the hydrolyzed blend fibers were investigated. After hydrolysis, the weight loss of the blend fibers increased with increasing PEG content, blending time, and hydrolysis time. The tensile strength and tensile modulus of the blend fibers decreased with increasing PEG content, blending time, and hydrolysis time. Therefore, it can be concluded that the weight loss of the PLA/PEG blend fibers was less than 0.9% even at hydrolysis time of 2 weeks and their strength retentions were over 90%.