• Title/Summary/Keyword: melons

Search Result 76, Processing Time 0.035 seconds

Changes in Air Temperature of Plastic House as Affected by Light Control Film and Their Impacts on Korean Melon Yield (조광필름을 피복한 시설 내 기온변화와 참외의 수량)

  • Shin, Yong Seub;Lee, Ji Eun;Do, Han Woo;Chun, Hee;Chung, Doo Seok
    • Journal of Bio-Environment Control
    • /
    • v.27 no.1
    • /
    • pp.80-85
    • /
    • 2018
  • This study was carried out to clarify the effect of CHO-CO and PO film on air temperature in greenhouse and Korean melon fruit characteristics and yield. On January 8 in 2017, the maximum, minimum and average air temperature in greenhouse covered with CHO-CO film were $38.9^{\circ}C$, $13.4^{\circ}C$ and $20.1^{\circ}C$, respectively. At the same date, the maximum, minimum and average air temperature in greenhouse covered with PO film were $40.0^{\circ}C$, $14.9^{\circ}C$ and $20.3^{\circ}C$, respectively. On August 7 in 2017, the maximum, minimum and average air temperature in greenhouse covered with CHO-CO film were $47.2^{\circ}C$, $23.1^{\circ}C$ and $32.4^{\circ}C$, respectively, and the maximum, minimum and average air temperature in greenhouse covered with PO film were $50.3^{\circ}C$, $23.6^{\circ}C$ and $34.0^{\circ}C$, respectively. The results of investigation of qualities and yields of Korean melons from May 26 to August 15 in 2017 were as follows. The fruit weight of Korean melon harvested in CHO-CO film's greenhouse was 371.6g which was 22.2g less than that of PO film greenhouse. The sugar contents of Korean melon harvested in CHO-CO film greenhouse was $14.5^{\circ}brix$ which was $1.4^{\circ}brix$ greater than that of the fruits harvested in PO film greenhouse. The chromaticity (a-value) of fruit skin of Korean melon harvested in CHO-CO film greenhouse was 12.3 which was 1.5 greater than that of the fruits harvested in PO film greenhouse. The marketable yield rate of Korean melon harvested in CHO-CO film's greenhouse was 89.4% which was 8.0% higher than the fruits harvested in PO film greenhouse. The yield of Korean melon harvested in CHO-CO film's greenhouse was 2694kg per 10 a which was 26% more than that harvested in PO film greenhouse. In conclusion, the CHO-CO film could be effective to produce Korean melon in high temperature season.

Effects of Modified Installation Methods of Roof Ventilation Devices in the Single-span Plastic Greenhouses on Yield and Fruit Quality of Oriental Melon (단동 비닐하우스의 지붕 환기장치 설치방법 개선이 참외생육 및 과실수량에 미치는 영향)

  • Yeo, Kyung-Hwan;Yu, In-Ho;Choi, Gyeong Lee;Lee, Seong-Chan;Lee, Jae-Han;Park, Kyoungs Sub;Lee, Jung-Sup;Bekhzod, Khoshimkhujaev
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.334-342
    • /
    • 2016
  • In order to evaluate the modified installation methods of roof ventilation devices, derived from the previous experiment ('investigation into the optimum capacity of roof ventilation devices and their deployment'), the conventional and modified (improved) roof ventilation systems were installed in the single-span plastic greenhouse for growing oriental melons. The roof vents ($60{\varphi}$) and roof fans (maximum air capacity of $38m^3/min$) were installed in the spacing of 15m (FT, modified 'side vent+roof fan' ventilation) and 6m (TT, modified 'side vent+roof vent' ventilation) respectively on the roof of greenhouses for the modified roof ventilation treatments, and 20m (FC, conventional 'side vent+roof fan' ventilation) and 8m (TC, conventional 'side vent+roof vent' ventilation) for the conventional ones. The stem diameter, leaf blade lengh, petiole length, and leaf width were lower in the FT and TT treatments than those in the conventional treatments, FC and TC. Although the fruit weight and total yields were slightly lower in the FT and TT treatments, the marketable fruit ratio (%) were higher, as a result of increased fruiting ratio (%) in these treatments, than those of FC and TC. The marketable yields (kg/10a) in the FT and TT treatments were 8,391 kg/10a and 7,283 kg/10a, which were respectively 661 kg/10a and 487 kg/10a higher than those in the treatments of FC and TC. The modified installation methods of roof fan resulted in production of more female flowers and lower fruit drop ratio (%) compared to conventional meathods. In the treatment of the conventional ventilation with roof vent, the fruit weight, fruit length & width, and flesh thickness were higher than in other treatments, but there were no significant differences in the fruit width and flesh thickness among the treatments.

Effects of Shipping Temperature on Quality Changes of Cucumber, Eggplant, Melon, and Cherry-tomato Fruit during Simulated Export and Marketing (오이, 가지, 멜론 및 방울토마토 과실의 수송온도가 모의 수출 및 유통중 품질에 미치는 영향)

  • Park, Se Won;Kwon, Yong;Chi, Soung Han;Hong, Se Jin;Park, YounMoon
    • Horticultural Science & Technology
    • /
    • v.17 no.2
    • /
    • pp.118-122
    • /
    • 1999
  • Quality changes of fruit vegetables were investigated during simulated export and marketing to find out the optimum shipping temperature. Fruit vegetables were loaded into a small refrigerated-container and kept for four days at various temperatures, and fruit quality was assayed immediately after harvest, 4 days after storage and 4 days after marketing at ambient temperature. In 'Back Seong Ilho' cucumber fruits, fresh weight loss was further reduced at $13^{\circ}C$ and $11^{\circ}C$ than at $15^{\circ}C$ and room temperature. Soluble solid contents remained at relatively lower levels when cucumbers were stored at $13^{\circ}C$ and $11^{\circ}C$. In 'Chun Ryang' eggplant fruits, fresh weight loss was greatly increased at all the temperatures (room, $12^{\circ}C,\;9^{\circ}C,\;and\;6^{\circ}C$). However, flesh browning, a primary quality factor of eggplant fruit, was most effectively inhibited at $9^{\circ}C$, whereas chilling injury occurred in fruit flesh at $6^{\circ}C$. Water loss of 'Eals Seinu' melon fruits was most inhibited and soluble solid contents at harvest were maintained for the longest period at $4^{\circ}C$. In 'Pe Pe' cherry tomatoes, storage at $10^{\circ}C$ and $7^{\circ}C$ seemed to more effectively inhibit metabolic changes and the incidence of cracking, the severest disorder than room temperature. But the fruits stored at $10^{\circ}C$ contained higher level of soluble solids than those at $7^{\circ}C$. The overall results suggest that the optimum shipping temperature range is 11 to $13^{\circ}C$ for cucumbers, around $9^{\circ}C$ for eggplant fruit, $4^{\circ}C$ for melons, and $10^{\circ}C$ for cherry tomatoes.

  • PDF

Current Status of the Research on the Postharvest Technology of Melon(Cucumis melo L.) (멜론(Cucumis melo L.) 수확 후 관리기술 최근 연구 동향)

  • Oh, Su-Hwan;Bae, Ro-Na;Lee, Seung-Koo
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.442-458
    • /
    • 2011
  • Among Cucubitaceae, melon (Cucumis melo) is one of the most diversified fruits, with various forms, sizes, pulps, and peel colors, In addition, it is a commercially important crop because of its high sweetness, deep flavor, and abundant juice. In the species, there are both climacteric and non-climacteric melons depending on the respiration and ethylene production patterns after harvest. Ethylene is also considered a crucial hormone for determining sex expression, Phytohormones other than ethylene interact and regulate ripening, There are some indices that can be used to evaluate the optimum harvest maturity. The harvest time can be estimated after the pollination time, which is the most commonly used method of determining the harvest maturity of the fruit. Besides the physiological aspects, the biochemical alterations, including those of sweetness, firmness, flavor, color, and rind, contribute to the overall fruit quality. These changes can be categorized based on the ethylene-dependent and ethylene-independent phenomena due to the ethylene-suppressed transgenic melon. After harvest, the fruits are precooled to $10^{\circ}C$ to reduce the field heat, after which they are sized and packed. The fruits can be treated with hot water ($60^{\circ}C$ for 60 min) to prevent the softening of the enzyme activity and microorganisms, and with calcium to maintain their firmness. 1-methylenecyclopropene (1-MCP) treatment also maintains their storability by inhibiting respiration and ethylene production. The shelf life of melon is very short even under cold storage, like other cucurbits, and it is prone to obtaining chilling injury under $10^{\circ}C$. In South Korea, low-temperature ($10^{\circ}C$) storage is known to be the best storage condition for the fruit. For long-time transport, CA storage is a good method of maintaining the quality of the fruit by reducing the respiration and ethylene. For fresh-cut processing, washing with a sanitizing agent and packing with plastic-film processing are needed, and low-temperature storage is necessary. The consumer need and demand for fresh-cut melon are growing, but preserving the quality of fresh-cut melon is more challenging than preserving the quality of the whole fruit.

Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season (멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질)

  • Choi, Su hyun;Lim, Mi Yeong;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.376-387
    • /
    • 2019
  • Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.

Photosynthesis by Leaf Age and Fruit Characteristics by Fruiting Nodes in Vertical and Hydroponic Cultivation of Oriental Melon Applied with Air Duct for High-temperature Season (고온기 송풍 덕트 적용 수직·수경재배 참외의 엽령별 광합성과 착과 절위별 과실 특성)

  • Youngsin Hong;Sohyun Park;Sungwook Yun;Jinkyung Kwon;Siyoung Lee;Sanggyu Lee;Jongpil Moon;Jaekyung Jang;Hyojun Bae;Jeongsu Hwang
    • Journal of Bio-Environment Control
    • /
    • v.32 no.2
    • /
    • pp.89-96
    • /
    • 2023
  • This study was conducted to apply with an air duct for the cooling and a utilizing cultivating method that uses the fruiting node and the defoliation to the high-temperature vertical and hydroponic cultivation of the oriental melon. The lower fruiting node (LF) was to remove all third vines generated from 5 nodes of a secondary vine. The higher fruiting node (HF) was fruiting on the third vine generated from a first node of the third vine. The direction of the stem string; upward (UW), downward (DW). Four treatment conditions were applied with the LF-UW, LF-DW, HF-UW (control), and HF-DW. The leaf age of melon leaves was measured for photosynthesis at 3 days intervals, and the fruit characteristic was conducted on 79 fruits in each treatment. The photosynthesis rate steadily increased after leaf development, reaching 20.8 μmol CO2·m-2·s-1 on the 10 days, gradually increasing to 21.3 μmol CO2·m-2·s-1 on the 19 days, and reaching 23.4 μmol CO2·m-2·s-1 on the 32 days. After that, it lowered to 16.8 μmol CO2·m-2·s-1 on the 38 days and dropped significantly to 7.6 μmol CO2·m-2·s-1 on the 47 days. As a result of the fruit characteristics by fruiting nodes, the treatments of the fruit length was 12.6-13.4 cm, respectively, which was significant, and the fruit width was 7.9- 8.6 cm, respectively, was not significant. The soluble content ranged from 12.9 to 15.7°Brix, and the significance of all treatments, and higher than of LF-DW and HF-UW. The photosynthesis rate of melon leaves was good until 32 days after leaf development, but after that, the rate decreased. As for fruit quality, it was conformed that melons can be cultivated at the LF because the fruit enlargement and soluble content dose not decrease even when set at the LF. Results indicated that those can be used for LF and defoliation in the development of vertical and hydroponic cultivation method in high-temperature season.