• Title/Summary/Keyword: mel-frequency cepstral coefficient

Search Result 65, Processing Time 0.027 seconds

Enhancement of Authentication Performance based on Multimodal Biometrics for Android Platform (안드로이드 환경의 다중생체인식 기술을 응용한 인증 성능 개선 연구)

  • Choi, Sungpil;Jeong, Kanghun;Moon, Hyeonjoon
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.3
    • /
    • pp.302-308
    • /
    • 2013
  • In this research, we have explored personal authentication system through multimodal biometrics for mobile computing environment. We have selected face and speaker recognition for the implementation of multimodal biometrics system. For face recognition part, we detect the face with Modified Census Transform (MCT). Detected face is pre-processed through eye detection module based on k-means algorithm. Then we recognize the face with Principal Component Analysis (PCA) algorithm. For speaker recognition part, we extract features using the end-point of voice and the Mel Frequency Cepstral Coefficient (MFCC). Then we verify the speaker through Dynamic Time Warping (DTW) algorithm. Our proposed multimodal biometrics system shows improved verification rate through combining two different biometrics described above. We implement our proposed system based on Android environment using Galaxy S hoppin. Proposed system presents reduced false acceptance ratio (FAR) of 1.8% which shows improvement from single biometrics system using the face and the voice (presents 4.6% and 6.7% respectively).

Parts-based Feature Extraction of Speech Spectrum Using Non-Negative Matrix Factorization (Non-Negative Matrix Factorization을 이용한 음성 스펙트럼의 부분 특징 추출)

  • 박정원;김창근;허강인
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.49-52
    • /
    • 2003
  • In this paper, we propose new speech feature parameter using NMf(Non-Negative Matrix Factorization). NMF can represent multi-dimensional data based on effective dimensional reduction through matrix factorization under the non-negativity constraint, and reduced data present parts-based features of input data. In this paper, we verify about usefulness of NMF algorithm for speech feature extraction applying feature parameter that is got using NMF in Mel-scaled filter bank output. According to recognition experiment result, we could confirm that proposal feature parameter is superior in recognition performance than MFCC(mel frequency cepstral coefficient) that is used generally.

  • PDF

Performance Improvement of Speaker Recognition Using Enhanced Feature Extraction in Glottal Flow Signals and Multiple Feature Parameter Combination (Glottal flow 신호에서의 향상된 특징추출 및 다중 특징파라미터 결합을 통한 화자인식 성능 향상)

  • Kang, Jihoon;Kim, Youngil;Jeong, Sangbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2792-2799
    • /
    • 2015
  • In this paper, we utilize source mel-frequency cepstral coefficients (SMFCCs), skewness, and kurtosis extracted in glottal flow signals to improve speaker recognition performance. Generally, because the high band magnitude response of glottal flow signals is somewhat flat, the SMFCCs are extracted using the response below the predefined cutoff frequency. The extracted SMFCC, skewness, and kurtosis are concatenated with conventional feature parameters. Then, dimensional reduction by the principal component analysis (PCA) and the linear discriminat analysis (LDA) is followed to compare performances with conventional systems under equivalent conditions. The proposed recognition system outperformed the conventional system for large scale speaker recognition experiments. Especially, the performance improvement was more noticeable for small Gaussan mixtures.

Parallel Network Model of Abnormal Respiratory Sound Classification with Stacking Ensemble

  • Nam, Myung-woo;Choi, Young-Jin;Choi, Hoe-Ryeon;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.21-31
    • /
    • 2021
  • As the COVID-19 pandemic rapidly changes healthcare around the globe, the need for smart healthcare that allows for remote diagnosis is increasing. The current classification of respiratory diseases cost high and requires a face-to-face visit with a skilled medical professional, thus the pandemic significantly hinders monitoring and early diagnosis. Therefore, the ability to accurately classify and diagnose respiratory sound using deep learning-based AI models is essential to modern medicine as a remote alternative to the current stethoscope. In this study, we propose a deep learning-based respiratory sound classification model using data collected from medical experts. The sound data were preprocessed with BandPassFilter, and the relevant respiratory audio features were extracted with Log-Mel Spectrogram and Mel Frequency Cepstral Coefficient (MFCC). Subsequently, a Parallel CNN network model was trained on these two inputs using stacking ensemble techniques combined with various machine learning classifiers to efficiently classify and detect abnormal respiratory sounds with high accuracy. The model proposed in this paper classified abnormal respiratory sounds with an accuracy of 96.9%, which is approximately 6.1% higher than the classification accuracy of baseline model.

Classification of Underwater Transient Signals Using MFCC Feature Vector (MFCC 특징 벡터를 이용한 수중 천이 신호 식별)

  • Lim, Tae-Gyun;Hwang, Chan-Sik;Lee, Hyeong-Uk;Bae, Keun-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.675-680
    • /
    • 2007
  • This paper presents a new method for classification of underwater transient signals, which employs frame-based decision with Mel Frequency Cepstral Coefficients(MFCC). The MFCC feature vector is extracted frame-by-frame basis for an input signal that is detected as a transient signal, and Euclidean distances are calculated between this and all MFCC feature. vectors in the reference database. Then each frame of the detected input signal is mapped to the class having minimum Euclidean distance in the reference database. Finally the input signal is classified as the class that has maximum mapping rate in the reference database. Experimental results demonstrate that the proposed method is very promising for classification of underwater transient signals.

Improvement of Speech Reconstructed from MFCC Using GMM (GMM을 이용한 MFCC로부터 복원된 음성의 개선)

  • Choi, Won-Young;Choi, Mu-Yeol;Kim, Hyung-Soon
    • MALSORI
    • /
    • no.53
    • /
    • pp.129-141
    • /
    • 2005
  • The goal of this research is to improve the quality of reconstructed speech in the Distributed Speech Recognition (DSR) system. For the extended DSR, we estimate the variable Maximum Voiced Frequency (MVF) from Mel-Frequency Cepstral Coefficient (MFCC) based on Gaussian Mixture Model (GMM), to implement realistic harmonic plus noise model for the excitation signal. For the standard DSR, we also make the voiced/unvoiced decision from MFCC based on GMM because the pitch information is not available in that case. The perceptual test reveals that speech reconstructed by the proposed method is preferred to the one by the conventional methods.

  • PDF

A Study on Hazardous Sound Detection Robust to Background Sound and Noise (배경음 및 잡음에 강인한 위험 소리 탐지에 관한 연구)

  • Ha, Taemin;Kang, Sanghoon;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1606-1613
    • /
    • 2021
  • Recently various attempts to control hardware through integration of sensors and artificial intelligence have been made. This paper proposes a smart hazardous sound detection at home. Previous sound recognition methods have problems due to the processing of background sounds and the low recognition accuracy of high-frequency sounds. To get around these problems, a new MFCC(Mel-Frequency Cepstral Coefficient) algorithm using Wiener filter, modified filterbank is proposed. Experiments for comparing the performance of the proposed method and the original MFCC were conducted. For the classification of feature vectors extracted using the proposed MFCC, DNN(Deep Neural Network) was used. Experimental results showed the superiority of the modified MFCC in comparison to the conventional MFCC in terms of 1% higher training accuracy and 6.6% higher recognition rate.

Modified Mel Frequency Cepstral Coefficient for Korean Children's Speech Recognition (한국어 유아 음성인식을 위한 수정된 Mel 주파수 캡스트럼)

  • Yoo, Jae-Kwon;Lee, Kyoung-Mi
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • This paper proposes a new feature extraction algorithm to improve children's speech recognition in Korean. The proposed feature extraction algorithm combines three methods. The first method is on the vocal tract length normalization to compensate acoustic features because the vocal tract length in children is shorter than in adults. The second method is to use the uniform bandwidth because children's voice is centered on high spectral regions. Finally, the proposed algorithm uses a smoothing filter for a robust speech recognizer in real environments. This paper shows the new feature extraction algorithm improves the children's speech recognition performance.

Frame Reliability Weighting for Robust Speech Recognition (프레임 신뢰도 가중에 의한 강인한 음성인식)

  • 조훈영;김락용;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.323-329
    • /
    • 2002
  • This paper proposes a frame reliability weighting method to compensate for a time-selective noise that occurs at random positions of speech signal contaminating certain parts of the speech signal. Speech frames have different degrees of reliability and the reliability is proportional to SNR (signal-to noise ratio). While it is feasible to estimate frame Sl? by using the noise information from non-speech interval under a stationary noisy situation, it is difficult to obtain noise spectrum for a time-selective noise. Therefore, we used statistical models of clean speech for the estimation of the frame reliability. The proposed MFR (model-based frame reliability) approximates frame SNR values using filterbank energy vectors that are obtained by the inverse transformation of input MFCC (mal-frequency cepstral coefficient) vectors and mean vectors of a reference model. Experiments on various burnt noises revealed that the proposed method could represent the frame reliability effectively. We could improve the recognition performance by using MFR values as weighting factors at the likelihood calculation step.

Feature Extraction Based on Speech Attractors in the Reconstructed Phase Space for Automatic Speech Recognition Systems

  • Shekofteh, Yasser;Almasganj, Farshad
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.100-108
    • /
    • 2013
  • In this paper, a feature extraction (FE) method is proposed that is comparable to the traditional FE methods used in automatic speech recognition systems. Unlike the conventional spectral-based FE methods, the proposed method evaluates the similarities between an embedded speech signal and a set of predefined speech attractor models in the reconstructed phase space (RPS) domain. In the first step, a set of Gaussian mixture models is trained to represent the speech attractors in the RPS. Next, for a new input speech frame, a posterior-probability-based feature vector is evaluated, which represents the similarity between the embedded frame and the learned speech attractors. We conduct experiments for a speech recognition task utilizing a toolkit based on hidden Markov models, over FARSDAT, a well-known Persian speech corpus. Through the proposed FE method, we gain 3.11% absolute phoneme error rate improvement in comparison to the baseline system, which exploits the mel-frequency cepstral coefficient FE method.