
In this paper, a feature extraction (FE) method is 
proposed that is comparable to the traditional FE 
methods used in automatic speech recognition systems. 
Unlike the conventional spectral-based FE methods, the 
proposed method evaluates the similarities between an 
embedded speech signal and a set of predefined speech 
attractor models in the reconstructed phase space (RPS) 
domain. In the first step, a set of Gaussian mixture models 
is trained to represent the speech attractors in the RPS. 
Next, for a new input speech frame, a posterior-
probability-based feature vector is evaluated, which 
represents the similarity between the embedded frame 
and the learned speech attractors. We conduct 
experiments for a speech recognition task utilizing a 
toolkit based on hidden Markov models, over FARSDAT, 
a well-known Persian speech corpus. Through the 
proposed FE method, we gain 3.11% absolute phoneme 
error rate improvement in comparison to the baseline 
system, which exploits the mel-frequency cepstral 
coefficient FE method. 
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I. Introduction 

Traditional automatic speech recognition (ASR) systems, 
which convert human speech signals into corresponding text, 
are based on hidden Markov models (HMMs) to model the 
time varying nature of speech signals. Normally, speech signals 
are not used directly to model by HMM, so they are partitioned 
into a series of short quasi-stationary frames. Next, a set of 
feature vectors are extracted from the segments. The 
segmented frames are typically overlapped, for example, with a 
window size of 25 ms and a frame shift of 10 ms [1]. The 
extracted feature vector of each frame should be compact 
(small in dimension) and discriminatory. This means that the 
extracted feature vectors should contain all the information 
needed to distinguish speech units, for example, phonemes or 
subword units, and suppress the irrelevant information of 
speech signals [1], [2]. 

There are some popular feature extraction (FE) schemes, 
such as linear prediction coding (LPC), logarithm of filter bank 
energy (LFBE), mel-frequency cepstral coefficient (MFCC), 
and perceptual linear prediction (PLP) [3]. The LPC method is 
based on the AR modeling of speech signals. The second 
approach utilizes the energy of filter banks applied to the short-
term spectrum of a speech signal, and the other two schemes 
are based on cepstral analysis. In all of the mentioned methods, 
the nonlinear property of a speech signal is not considered; 
moreover, in the spectrum-based methods (LFBE, MFCC, and 
PLP), the phase information of a speech signal is removed [4]. 

On the other hand, there is experiment evidence that proves 
the existence of nonlinear characteristics in speech production 
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systems (for example, turbulence of speech) not considered in 
the conventional and mentioned FE methods [5], [6]. One of 
the best domains to represent nonlinear and chaotic properties 
of a speech signal is the phase space domain. Whitney and 
Takens introduced the delay coordinate embedding theorem to 
embed a time series (for example, speech signal) in the phase 
space domain [7], [8]. This theorem shows that a one-
dimensional signal can be embedded in a reconstructed phase 
space (RPS), a high-dimensional space. Because a recorded 
speech signal is a one-dimensional signal captured from a 
nonlinear and dynamical human speech production system, its 
true dynamic can be reconstructed in the RPS using 
embedding theory. The RPS can be topologically equivalent to 
the original system space if its parameters are chosen properly 
[9]. Therefore, the embedding theory is introduced to represent 
the actual dynamic and geometric structure of a one-variable 
time series. 

In [10]-[13], some nonlinear dynamic features, such as 
fractal dimensions, Kolmogorov entropy, correlation 
dimension, Lyapunov exponents, and radial and scalar 
distances, were extracted from embedded speech signals to 
improve the performance of an ASR system. Moreover, a 
parametric modeling technique and a nonparametric modeling 
technique based on binning and occurrence counts were 
introduced to capture the attractor structures of the isolated 
speech phonemes that appeared in the RPS domain [14], [15]. 
In [16], a feature vector was suggested whose elements are a 
combination of the popular features of MFCC and some RPS-
based features attained through parametric modeling of the 
Poincaré section in the RPS. 

Most of the RPS-based feature vectors are used in some 
limited tasks, such as the isolated phoneme recognition; but, in 
this work, we capture an RPS-based feature vector that could 
be used in an ASR system, an FE method that benefits from a 
predefined set of phoneme attractors in the RPS. The proposed 
method could be considered as a development of Povinelli’s 
method [15]. 

The rest of this paper is organized as follows. Section II 
introduces the embedding theorem and the RPS. Sections III 
and IV detail the requirement of phoneme attractors and the 
proposed FE method, respectively. In section V, the 
experimental setup is described. In section VI, our experiment 
results are introduced and discussed. Finally, we consider the 
results and present the conclusions in section VII. 

II. Reconstructed Phase Space 

One of the interesting topics in the dynamical system theory 
is the RPS method introduced and utilized by Takens and 
Sauer [9]. An RPS is a multidimensional space in which its  

 

Fig. 1. Phase space reconstruction of speech signal frame (vowel
phoneme /u/): (a) speech time series; (b) geometric
structure of reconstructed trajectories in three-dimensional
RPS (d = 3 and τ = 6). 
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coordinates are produced by shift-delay samples of a one-
dimensional signal as a time series. The chaotic behavior of 
such a signal could be exhibited in the RPS. 

The sequence of embedded points of a signal in the RPS is 
commonly referred to as signal trajectory. To construct a signal 
trajectory, its samples must be embedded in the RPS. If a single 
point of the embedded signal in the RPS is given by 

{ }
2 ( 1)

1 2 3

[ ... ],
where , , ,..., ,

l l l τ l τ l d τ
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S s s s s
s s s s s

+ + + −=

=
       

(1)
 

in which sl is the l-th sample of an N-point segment of the 
original one-dimensional signal s, then d is the embedding 
dimension, and τ is the time lag. The concept of embedding 
dimension and time lag plays an important role in both the 
practical and theoretical aspects of the RPS [9], [14]. The 
minimum possible embedding dimension can be identified by 
some heuristic procedures, such as false nearest neighbor. 
Common techniques, including the first minimum of the auto-
mutual information function or the first zero crossing of the 
autocorrelation function, are used to identify the preferred time 
lag of the RPS [9], [17], [18]. 

Figure 1 shows a speech frame of voiced phoneme /u/ and its 
embedded trajectory in a three-dimensional RPS (d=3). As 
seen in this figure, the behavior of a speech signal trajectory in 
the RPS, for all the voiced phonemes, creates attractors that are 
very similar to the process of squeezing in chaotic signals. 
These chaotic attractors are built up in the RPS by the endless 
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repetition of the stretching and squeezing processes [9]. On the 
other hand, another chaotic behavior like the stretching 
behavior of chaotic signals is observed for the fricative and 
plosive phonemes (such as /b/ and /t/). 

In this paper, we consider the consecutive samples of speech 
frames as a set of time series. So, the RPS representation S of a 
speech frame s in (1) can be represented by a trajectory matrix 
defined as 

1 1 1 ( 1)1

2 2 2 ( 1)2
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      (2) 

where  is the number of embedded points 
in the RPS. The trajectory matrix is a mathematical 
representation of the RPS formed by compiling its row vectors 
from the vectors that are created by (1). 

( 1)L N d τ= − −

Since the elements of the trajectory matrix of (2) indicate the 
absolute positions of the embedded points in the RPS, to obtain 
dynamic information of signal trajectory [18], a flow matrix 
can be defined as 
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where Si is the i-th row of the trajectory matrix S. Several 
experiments have shown that the flow matrix can include 
useful information to discriminate different attractors from each 
other in the RPS [18]-[20]. 

III. Phoneme Attractor Models  

The proposed FE method is based on the posterior 
probability evaluation of the embedded samples of a new given 
frame of speech in the RPS, considering the statistical models 
developed previously for the selected speech units embedded 
into the RPS. Therefore, first, we must define a set of 
reasonable speech units (such as phoneme, diphone, biphone, 
and so on). In this paper, we use phonemes as the speech units 
to be probabilistically modeled in the RPS. Similar to 
Povinelli’s experiments, we utilize parametric distribution 
models based on Gaussian mixture model (GMM) 
distributions [14], [15]. Povinelli and others utilized the RPS 
embedding and GMM approaches to model phoneme units for 
an isolated phoneme recognition application using a Bayes 
maximum likelihood (ML) classifier. Meanwhile, based on the 
proposed method, the extracted features are the obtained 
posterior probability of the phoneme attractors embedded in 
the RPS, and the following continuous phoneme recognition 

 

Fig. 2. Distribution modeling of embedded speech frame of Fig. 1
(vowel phoneme /u/): (a) geometric structure of its
reconstructed trajectories in two-dimensional RPS; (b)
GMM-based distribution modeling in two-dimensional
RPS, using M=8 GMM components. 
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task is done using a standard HMM. 

Figure 2 shows a phoneme distribution of a vowel phoneme 
/u/ in a 2-dimensional RPS. A visualization of its GMM 
modeling, using eight Gaussian components, is also depicted in 
this figure, in which every centered ellipse corresponds to one 
of the Gaussian components of the GMM model. Such RPS 
embedded trajectories can be considered the phoneme 
attractors, because they exhibit the behavior of speech 
trajectories in the RPS [21]. In this paper, to identify these 
attractors, the following procedure is proposed:  

1) The isolated phoneme waveforms, taken from the training 
set, are normalized using mean subtraction and variance 
normalization methods to address amplitude variation 
across the phoneme instances. 

2) Using embedding theory discussed in section II, the 
trajectory and flow matrices of each isolated phoneme 
waveform are computed with the commonly used 
parameters embedding dimension 8 and time lag 6 [16]. 
These matrices are then appended and used as the training 
RPS-based feature sets needed for the GMM modeling. 
Therefore, in this manner, a raw (2*d)-dimensional feature 
set is defined as 

[ ,Δ ],X S S=                     (4)  

where S is the trajectory matrix, and  is the flow 
matrix, defined in (2) and (3), respectively. 

ΔS
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3) Using the prepared training data for each phoneme (to 
find its attractor), the parameters of the GMM specialized 
to model its attractor is estimated using the well-known 
iterative method of the expectation maximization 
algorithm. By iterating this phase for other phonemes one 
by one, we get a set of GMM probability distributions; 
each GMM defines a probability distribution for its 
assigned phoneme in the RPS, Ci, which could be 
interpreted as a phoneme attractor. Using phoneme 
attractor Ci, the probability of sample x inside the RPS is 
evaluated by 

1
( | ) ( ; ,Σ ),

M

i m m m
m

p x C w N x μ
=

= ∑ m          (5) 

where M is the number of mixtures (Gaussian 
components), is a normal distribution 
with mean vector 

( ; ,Σ )m m mN x μ
mμ  and covariance matrix , and 

is the mixture weight that results in 1  
The optimum number of mixtures M is determined 
empirically in this task and considered in section VI. 

Σm

mw 1.M
mm w= =∑

IV. Overall Structure of Proposed Feature Extraction 
Method  

In this section, we briefly introduce the proposed FE method 
based upon the dedicated GMM modeling of the subword 
attractors in the RPS. The subword attractors are considered the 
phoneme units of speech segments. In the proposed method, 
for an embedded speech signal X corresponding to an input 
speech frame (observed as an RPS-based vector), its posterior 
probability (conditional probability of phoneme attractor model 
given observed RPS-based vector X) is calculated for all of the 
previously modeled phoneme attractors. The computed 
posterior probability of some of the selected phoneme 
attractors in the RPS is then used as the final feature vector, that 
is, PPRPS, given by 

1( [ ]) [ ( | ),..., ( | )],n
KF s n p C X p C X= n        (6) 

where K is the number of selected phoneme attractors, s[n] is 
the n-th frame of the seech signal, and F(s[n]) is the proposed 
feature vector, PPRPS. In addition, Xn is the embedded data of 
the n-th frame in the RPS introduced in the previous section. 
The elements of PPRPS are evaluated via the following 
equation, using the likelihood function introduced in (5): 
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where L is the number of the embedded points Xn of the n-th 

speech frame in the RPS and Xl
n is the l-th point of the 

embedded frame Xn. Here, we assume that the prior probability 
p(Ci) of all of the considered phoneme attractors is equal. 

One of the most important parameters of the proposed 
feature vector is the number of primarily selected attractors K. 
Finding attractors through which discriminative features can be 
properly extracted is an open problem in implementing the 
proposed method. The feature selection methods could be 
employed to solve this problem. In this work, first of all, each 
element of the obtained feature vector corresponds to one of 
the phoneme attractors. Next, to find the best final feature set, 
we utilize an isolated phoneme recognition-based method 
(similar to that in Povinelli’s experiments [14]) to rank and 
select phoneme attractors that corresponded to phonemes with 
higher recognition accuracy rates. In this work, the parameter K 
is selected as 13, 26, or 30 to make possible an equitable 
comparison between the proposed feature vector and the 
extracted traditional speech feature vector. 

Moreover, we employ the linear discriminative analysis 
(LDA) method to increase the discriminative ability of the 
extracted features. LDA is a supervised method used in pattern 
recognition and machine learning to find a linear combination 
of features that separates two or more classes of data [1], [2]. 
This linear transformation method attempts to maximize the 
linear separation between the classes of data. The new resulting 
combination is commonly used as the final features, which are 
decorrelated and are ready to feed the final classifier. The LDA 
transformation is made, as given by 

LDA LDA( [ ]) ( [ ]),TF s n W F s n= ⋅           (8) 

where WLDA is estimated from an eigendecomposition 
approach [1], [2] and the transpose operator is denoted by a 
superscript T. 

V. Database and ASR Setup 

In this paper, a well-known Persian speech corpus, 
FARSDAT, is used to conduct the experiments [22]. 
FARSDAT includes a variety of Persian speech data collected 
from 304 adult speakers differing in age, gender, dialect, and 
educational level. Each participant spoke 20 sentences in two 
sessions. These speech samples were manually segmented and 
labelled for each phoneme and word. 

Speech data of the first 250 speakers was assigned to a 
training stage, and the rest of the data was assigned to a test 
stage. A set of 44 phonetic labels was employed in the labelling 
stage of the corpus. In this work, the labels are reduced to 30 
classes by merging some of them. 

A state-of-the-art continuous phoneme speech recognition 
(CPSR) system, utilizing HTK functions, is used to conduct the 
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main experiments [23]. The following points are considered to 
implement the context-dependent HMM recognizer using the 
HTK toolkit. 

• Bigram phoneme language model 
• Well-trained HMM triphone models initially produced 

from 30 initial monophone models, similar to previous 
work [18], [24] 

• Decision tree used to tie single Gaussians of states to 
overcome lack of training data for some triphone models  

• Number of Gaussian mixtures of HMMs finally increased 
to eight 

The training procedure leads to a collection of continuous 
density HMM triphone models. The results are obtained using 
gender independent models in a single-pass decoding 
framework, without speaker adaptation. The recognition results 
of CPSR are introduced by the phoneme error rate (PER) 
measure, as given by 

100(%),I D SPER
N

+ += ×             (9) 

where N is the total number of phones in the reference phonetic 
transcription, and I, D, and S are the number of insertions, 
deletions, and substitutions of decoded phones, respectively. 

In this paper, feature extraction real-time factor (FE-RTF) is 
a time factor used as a speed measuring metric; we define this 
parameter as the ratio of the FE time to duration of the 
processed speech file. Therefore, lower values of FE-RTF 
indicate better runtimes for the FE phase of the whole speech 
recognition process. 

VI. Experiment Results and Discussion 

This section details the experiment results obtained from the 
proposed RPS-based FE method. As mentioned in section IV, 
to implement the proposed method, the most effective features 
(assigned to the posterior probability of some phoneme 
attractors) must be selected in the first step. First, to find the 
best features, we implement an isolated phoneme recognition 
test, a simpler task compared to the final experiments with an 
ASR system, similar to Povinelli’s work [14], to select the 
proper phoneme attractors. 

1. Isolated Phoneme Recognition Experiments 

Using the learned and evaluated GMM models for all the 
phoneme attractors, we construct the preliminary PPRPS 
(K=30) needed for the isolated phoneme recognition, according 
to (6). The implemented evaluation of isolated phoneme 
recognition is done utilizing a multiclass support vector 
machine (SVM) to consider the discriminative ability of  

Table 1. ACC of isolated phoneme recognition, using proposed 
feature vector with K=30 (29 Persian phoneme attractors 
+ silence attractor). 

Feature vector SVM-kernel K ACC (%) 
Povinelli’s  

method [14] - - 50.12 

PPRPS Linear 30 60,24 

PPRPS Pol. D=2 30 63.59 

PPRPS Pol. D=3 30 61.48 

PPRPS RBF 30 62.76 

 

different compositions of the parameters stated in the proposed 
feature vector. To train SVM classifiers, the LIBSVM (Library 
for SVM) toolbox is utilized with different kernel functions, 
such as linear, polynomials, and radial basis function (RBF) 
kernels [25]. The main idea of the used kernel function is to 
map the original feature space into a high-dimensional space, 
in which the features may be linearly separated. Using 
LIBSVM, the appropriate parameter C, the regularization term 
in the Lagrange formulation, and the RBF (Gaussian) kernel 
parameter are found by searching over a grid space, along with 
fivefold cross validation. For multiclass SVM classification, 
LIBSVM implements the “one-against-one” approach [26]. If 
K is the number of classes, K(K–1)/2 classifiers are constructed 
and each one is trained with the data of two different classes 
(supervised). In the classification stage, a voting strategy is then 
utilized. 

Table 1 shows the obtained results of the preliminary 
experiments (isolated phoneme recognition). In this table, 
phoneme classification accuracy rate (ACC) via the proposed 
feature vector is shown using different types of kernel functions 
in the SVM classifier. The ACC is commonly used as a 
classification accuracy measurement in isolated phoneme 
recognition tasks. It can be computed by the ratio of the 
number of correctly recognized phones to the total number of 
isolated reference phones.  

In addition, a classification accuracy rate based on the 
isolated phoneme recognition of Povinelli’s method [14] 
(classification accomplished through the Bayes ML method) is 
scheduled in the first row of Table 1. In the first experiment, we 
utilize M=128 and K=30. Assuming there are 30 phoneme 
classes (number of phoneme labels, including silence), K=30 is 
equal to utilizing all the possible Persian phoneme attractors in 
the RPS. 

As shown in Table 1, the results obtained via the proposed 
PPRPS are noticeable. The best classification accuracy rate of 
the proposed method is 63.59%, which shows superiority over 
Povinelli’s method by a 13.47% absolute rate. This superiority 
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is gained using PPRPS and the SVM classifier with a second-
order polynomial kernel. This shows that a nonlinear 
transformation over the features extracted via the proposed 
RPS-based method could help the classification process. 

In Povinelli’s method, the classification is done based on a 
Bayes ML schema, directly using the involved GMMs. 
However, in the proposed method, some features are first 
evaluated via the posterior probability of each phoneme 
attractor in (6), and the SVM classifier is then applied to them. 
In the proposed method, we improve feature observation 
utilizing the obtained information of phoneme attractors in the 
RPS. This is not the case in Povinelli’s method. So, using the 
PPRPS method, RPS-based information is extracted as a 
proper feature vector for speech frames, to be properly 
exploited in an ASR task. 

2. Selection of Phoneme Attractors 

In the next step, some of the phoneme attractors must be 
selected to be employed in the further continuous phoneme 
recognition application. This is done according to the ACC of 
different phonemes. Heuristically, we choose those attractors 
belonging to the well-recognized phonemes for this purpose. 
Therefore, the features that correspond to them are kept in the 
final feature vector (PPRPS) and the others are removed. In 
Table 2, the classification accuracy of 29 Persian phonemes, for 
the isolated phoneme recognition task obtained via Povinelli’s 
method and the proposed FE method (PPRPS), are scheduled. 
The phonemes are ranked through the ACC of the PPRPS 
experiment. Table 2 shows the superiority of PPRPS features 
over Povinelli’s framework in more detail. In the proposed 
method, the members of the final feature vector (for example, 
in (6)) are selected from the phonemes that have higher 
accuracy, as shown in Table 2. 

Potentially, one of the most challenging aspects in 
implementing the proposed method is its computational cost. If 
we assume O(g) as the required computational cost to calculate 
the likelihood function of a single Gaussian model, the 
proposed PPRPS method needs about L*K*M*O(g) 
computations to extract the features assigned to one frame of a 
speech signal where L is the number of the embedded points in 
the RPS, which generally cannot be reduced; therefore, the 
chosen values of K (number of the selected GMMs) and M 
(number of mixtures for GMM) must be small whenever 
possible. 

In much of the reported work on ASR, the length of the used 
feature vector (in many cases, MFCC and its derivations) in 
different cases was selected as 13, 26, or 39 to make it possible 
to have an equitable comparison of the proposed method with a 
typical baseline system. In each of the experiments conducted  

Table 2. ACC of 29 phoneme attractors in isolated phoneme 
recognition task for Povinelli’s method (Pov.) and 
PPRPS-2 FE approach (silence is not considered as 
attractor in this table). 

ACC (%) ACC (%) 
Rank Ph.

Pov. PPRPS
Rank Ph. 

Pov. PPRPS
1 a 71.37 85.76 16 t 35.39 53.24

2 s 71.18 82.59 17 u 61.81 51.87

3 sh 64.35 82.18 18 n 25.69 51.59

4 aa 68.07 77.82 19 o 52.82 50.91

5 kh 58.12 70.02 20 h 42.68 49.69

6 e 41.80 68.01 21 zh 43.01 48.00

7 b 56.11 67.33 22 j 46.80 44.33

8 z 54.12 67.18 23 v 56.23 43.49

9 i 44.62 64.33 24 f 43.31 42.04

10 d 31.42 63.99 25 p 39.44 41.98

11 k 23.33 58.53 26 l 26.74 25.97

12 m 42.30 57.40 27 q 28.79 23.84

13 gs 50.16 57.17 28 g 13.57 16.58

14 ch 76.74 56.48 29 y 27.23 12.10

15 r 35.94 55.06 - ALL 50.12 63.59

 

to evaluate our proposed method, we choose and examine the 
value 13 or 26 for the parameter K. So, based on the 
classification rate scheduled in Table 2, the first K phonemes 
and their assigned attractor models are selected to be used in 
our next experiments. 

3. Continuous Phoneme Recognition Experiments 

Table 3 shows the results obtained via the proposed PPRPS 
FE method by a continuous phoneme speech recognition 
system, for different values of the number of Gaussian 
components (M) of the employed GMM model. All the 
experiments are conducted using 26 phoneme attractors 
(K=26), selected as previously mentioned. FE-RTF values 
representing different cases are obtained based on the runtime 
of the FE phase of the experiments, implemented on a 
computer equipped with an Intel 3.07 GHz processor and 4 GB 
of RAM. The programs are developed and run in a MATLAB 
software domain. Using C-based language programming and 
hardware equipped with multicore processors could reduce the 
FE runtime significantly. 

By investigating the results scheduled in Table 3, we find that 
the best result (the lowest PER) is 46.53%, obtained for M=16. 
Of course, the choice of M=4 is a desirable choice because the 
complexity of the FE process is reduced about four times, 
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Table 3. PER and FE-RTF results of continuous recognition
experiment, using proposed feature vectors with
different number of mixtures (M). 

Feature vector M K PER (%) FE-RTF

PPRPS 128 26 50.93 46.63 

PPRPS 16 26 46.53 5.82 

PPRPS 8 26 47.40 2.94 

PPRPS 4 26 48.41 1.46 

Table 4. Results obtained for continuous phoneme recognition, 
using MFCC and proposed feature vector (GMM of 
phoneme attractors with M=4 mixture with/without 
LDA transformation, for different values of K) in 
different feature vector dimensions (Dim). 

Feature vector K Dim. PER (%) FE-RTF

MFCC (baseline) - 13 44.62 0.08 

MFCC + LDA13 - 13 43.79 - 

PPRPS 13 13 49.55 0.74 

PPRPS 26 26 48.41 1.46 

PPRPS+LDA26 26 26 41.51 1.46 

PPRPS+LDA13 26 13 43.31 - 

PPRPS+MFCC+LDA26 26 26 38.57 - 

 

while the PER increases only about 1.9%. 
As discussed in section IV, we could modify the primarily 

extracted feature vector, utilizing LDA transformation, as given 
in (8). In the following, we employ the proposed PPRPS FE 
method with M=4 because of its lower computational cost. To 
evaluate the performance of the final proposed features, we 
compare it with the MFCC features, which are the most 
frequently used in the current ASR systems [1]. The MFCCs 
are features evaluated through the magnitude-only spectrums 
calculated from short-time frames of a speech signal. In our 
experiments, we use the first 12 cepstral coefficients of the 
MFCC features combined with the zero-order cepstral 
coefficient, which together lead to a 13-dimensional feature 
vector. To extract the MFCC feature vector, a filter bank 
including 20 triangular filters is [0]selected[0]. The obtained 
results are shown in Table 4. 

As shown in Table 4, the baseline system has a phoneme 
error rate of 44.62% and FE-RTF of 0.08. The best PER result 
is obtained by the simultaneous usage of the PPRPS and LDA, 
without any dimensionality reduction. In this case, the PER of 
41.51% and FE-RTF of 1.46 are yielded. Other experiments 
including different values of K and dimensions of PPRPS 
features are shown in Table 4. Moreover, the recognition result 
of a combination of different MFCC-based and RPS-based 

acoustic features is given in the last row of Table 4. This 
combination of acoustic features is carried out directly on the 
level of feature vectors. Thirteen MFCC features are directly 
concatenated with 26 PPRPS features, and the resulting 39-
dimensional feature is reduced to a 26-dimensional vector via 
the LDA. In this manner, a significant reduction in PER is 
achieved, 2.94% and 6.05% against individually using the best 
PPRPS and MFCC feature vectors, respectively. 

To analyze the benefits of the proposed features, we could 
claim that the proposed method is particularly suited in 
differentiating between signals wherein their phases have 
important discriminative information. Of course, the phase 
information can be captured by the RPS. Therefore, the theory 
of time delay embedding is addressed by transforming a 
speech signal into the RPS, which has a mathematical 
correspondence with the true dynamic of the underlying 
system. The RPS is a time-invariant domain, so it can represent 
the trajectory of embedded signals or access the state structure 
of the systems. Based on the existence of geometric structures 
underlying the transmission of embedded speech points in the 
RPS (speech trajectory), some machine learning approaches 
can fit statistical distributions (for example, GMM) to model 
geometric structures of speech attractors. So, GMM modeling 
can be used for a continuous parametric model to analytically 
determine closed-form conditional distributions for each 
speech phoneme class and derive a specific phoneme attractor. 
In this manner, the posterior probabilities obtained from 
different attractors in the RPS domain capture extra 
information, among which might be phase information. 

The obtained results confirm that the extraction of proper 
features from signals embedded in the RPS gives our proposed 
method a significant discriminatory ability, enabling it to 
outperform the conventional MFCC method in continuous 
phoneme recognition applications. Additionally, the 
experiment results show the superiority of the proposed 
PPRPS-based features over Povinelli’s RPS-based method in 
the isolated speech recognition framework and verify the fact 
that the proposed features can be considered effective features 
to employ in continuous speech recognition systems. 

In this paper, we compare the results of only using static 
features via the proposed features with the results of only using 
static features via MFCC-based ones. Based on our extended 
experiments, the PER of a baseline ASR system including 13 
MFCC + 13 delta + 13 delta-delta (39 Dim. feature vector) is 
23%, whereas the PER achieved using the proposed feature 
vector and its delta features is 31%. Therefore, we may 
conclude that the usual and simple method of evaluating delta 
features [23], which is suitable for spectral-based or cepstral-
based features (for example, LFBE, PLP, and MFCC), is not a 
suitable approach to extract dynamic information from the 
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posterior-based features, such as the proposed PPRPS method. 
On the other hand, using a neural network framework, similar 
to the TANDEM framework [27], on some consecutive speech 
frames is expected to solve this problem, making dynamic 
information as valuable as the delta features of MFCC. The 
verification of this idea could be addressed in future works. 

VII. Conclusion 

In this work, we proposed an FE method, considering 
nonlinear characteristics of a speech signal. First, we defined a 
set of speech units as phoneme attractors in the phase space, 
constructed by the embedding theory. To identify the proper 
phoneme attractors, phonemes isolated through training were 
embedded in the RPS, utilizing Taken’s theory. Using the 
obtained trajectory and flow matrices, some GMMs were 
learned over the phoneme attractors reconstructed in the RPS. 
Finally, to extract the feature vector for a test signal, after 
embedding it in the RPS, the posterior probability of their 
attractors was evaluated, considering the previously trained 
GMMs. Next, a linear LDA transformation was applied to the 
features. These features were fed to an HMM classifier to 
implement a continuous phoneme recognition task and showed 
superiority over the MFCC features, by a 3.11% absolute 
reduction of the PER. Combining the MFCC and PPRPS 
features increased this reduction to 6.05%. 
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