• Title/Summary/Keyword: medium-resolution

Search Result 306, Processing Time 0.041 seconds

High-resolution medium-range streamflow prediction using distributed hydrological model WRF-Hydro and numerical weather forecast GDAPS (분포형 수문모형 WRF-Hydro와 기상수치예보모형 GDAPS를 활용한 고해상도 중기 유량 예측)

  • Kim, Sohyun;Kim, Bomi;Lee, Garim;Lee, Yaewon;Noh, Seong Jin
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.333-346
    • /
    • 2024
  • High-resolution medium-range streamflow prediction is crucial for sustainable water quality and aquatic ecosystem management. For reliable medium-range streamflow predictions, it is necessary to understand the characteristics of forcings and to effectively utilize weather forecast data with low spatio-temporal resolutions. In this study, we presented a comparative analysis of medium-range streamflow predictions using the distributed hydrological model, WRF-Hydro, and the numerical weather forecast Global Data Assimilation and Prediction System (GDAPS) in the Geumho River basin, Korea. Multiple forcings, ground observations (AWS&ASOS), numerical weather forecast (GDAPS), and Global Land Data Assimilation System (GLDAS), were ingested to investigate the performance of streamflow predictions with highresolution WRF-Hydro configuration. In terms of the mean areal accumulated rainfall, GDAPS was overestimated by 36% to 234%, and GLDAS reanalysis data were overestimated by 80% to 153% compared to AWS&ASOS. The performance of streamflow predictions using AWS&ASOS resulted in KGE and NSE values of 0.6 or higher at the Kangchang station. Meanwhile, GDAPS-based streamflow predictions showed high variability, with KGE values ranging from 0.871 to -0.131 depending on the rainfall events. Although the peak flow error of GDAPS was larger or similar to that of GLDAS, the peak flow timing error of GDAPS was smaller than that of GLDAS. The average timing errors of AWS&ASOS, GDAPS, and GLDAS were 3.7 hours, 8.4 hours, and 70.1 hours, respectively. Medium-range streamflow predictions using GDAPS and high-resolution WRF-Hydro may provide useful information for water resources management especially in terms of occurrence and timing of peak flow albeit high uncertainty in flood magnitude.

Morphological Characteristics of Ocean Core Complexes (OCC) in Central Indian Ridge Using High-Resolution Bathymetry and Backscatter Intensity Data from a Deep-Towed Vehicle (심해예인 고해상도 수심 자료와 후방산란 강도 자료를 이용한 인도양 중앙해령 내 Ocean Core Complex 구조의 지형적 특성 분석)

  • Hwang, Gyuha;Kim, Seung-Sep;Son, Seung Kyu;Kim, Jonguk;Ko, Youngtak
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.49-61
    • /
    • 2020
  • We analyzed the morphological characteristics of OCC (Ocean Core Complexes) in the middle part of the Central Indian Ridge (MCIR) using high-resolution geophysical data recorded on the Deep-Tow SideScan Sonar IMI-30 system. In terms of slope-gradient variations calculated from the high-resolution bathymetry data, the normal faults formed by seafloor spreading were associated generally with slopes > 30° and resulted in high backscatter intensities, which reflect more topographic effects than acoustic medium variation. However, the areas associated with gentle slopes < 10° tend to show the backscatter intensities reflecting the acoustic characteristic of the medium. We show that the detachment faults exposing the OCCs were initiated with high-angle normal faults (58°) exhibiting outward and inward dips of a breakaway zone. In order to examine the spatial distribution of OCC structures, we characterized the transition from magmatic-dominant seafloor with abyssal hills to tectonic-dominant seafloor with OCC using the down-slope direction variation. The slope direction of the seafloor generally tends to be perpendicular to the ridge azimuth in the magmatic-dominant zone, whereas it becomes parallel to the given ridge azimuth near the OCC structures. Therefore, this spatial change of seafloor slope directions indicates that the formation of OCC structures is causally associated with the tectonic-dominant spreading rather than magmatic extension. These results also suggest that the topographical characteristics of seafloor spreading and OCC structures can be distinguished using high-resolution geophysical data. Thus, we propose that the high-resolution bathymetry and backscatter intensity data can help select potential areas of exploitation of hydrothermal deposits in MCIR effectively.

High Resolution Video Synthesis with a Hybrid Camera (하이브리드 카메라를 이용한 고해상도 비디오 합성)

  • Kim, Jong-Won;Kyung, Min-Ho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.13 no.4
    • /
    • pp.7-12
    • /
    • 2007
  • With the advent of digital cinema, more and more movies are digitally produced, distributed via digital medium such as hard drives and network, and finally projected using a digital projector. However, digital cameras capable of shotting at 2K or higher resolution for digital cinema are still very expensive and bulky, which impedes rapid transition to digital production. As a low-cost solution for acquiring high resolution digital videos, we propose a hybrid camera consisting of a low-resolution CCD for capturing videos and a high-resolution CCD for capturing still images at regular intervals. From the output of the hybrid camera, we can synthesize high-resolution videos by software as follows: for each frame, 1. find pixel correspondences from the current frame to the previous and subsequent keyframes associated with high resolution still images, 2. synthesize a high-resolution image for the current frame by copying the image blocks associated with the corresponding pixels from the high-resolution keyframe images, and 3. complete the synthesis by filling holes in the synthesized image. This framework can be extended to making NPR video effects and capturing HDR videos.

  • PDF

Methodological Study on Measurement of Hydrogen Abundance in Hydrogen Isotopes System by Low Resolution Mass Spectrometry

  • Lia, Jin-Ying;Shib, Lei;Hub, Shi-Lin
    • Mass Spectrometry Letters
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • China's rapid economic growth has resulted in significant environmental side effects. Therefore, China has been interested in reducing her dependence on foreign oil and gas by developing technologies needed for hydrogen, in addition to her increasing energy mix of nuclear and renewable energy form, such as solar and wind power. There are three isotopes of hydrogen, i.e. protium (P or H), deuterium (D), and tritium (T). Both deuterium and tritium are important materials in nuclear fuel cycle industry. Tritium is one of the critical radioactive nuclides. Planning for and implementing contamination control as a part of normal operation and maintenance activities is an important function in any hydrogen facility, especially tritium facility. The development of hydrogen isotopes analysis is the key issues in this area. Mass spectrometry (MS) with medium (about 600) and high resolution (> 1,400) is commercially available; however, the routine analysis of hydrogen isotopes is done with low-resolution MS (< 200) in China. This paper summarizes the progress of MS measurement technology for hydrogen isotope abundance in China, focusing on our lab's research program and technical status. An analyzing method has been introduced for accurate measurement of tritium abundance in the H.D.T system by low resolution MAT-253 MS. The quotient of compression ratio coefficient is determined by building up equipment for laboratory-scale preparation of secondary standard gases and by considering the difference in sensitivity between hydrogen isotopes. The results show that the measured value is reproducible within the relative error range of 0.8% for gas samples of different tritium abundance.

The study of LISM using the high resolution spectra of the early types stars in the five open clusters

  • Park, Keun-Hong;Lee, Sang-Gak;Kang, Won-Seok;Yoon, Tae-Seog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.79.2-79.2
    • /
    • 2012
  • This study is aim to understand the distribution and the property of LISM (local interstellar medium) using the high resolution spectra of the 26 early type stars in the five open clusters ( IC 4665, Stephenson 1, Collinder 359, Roslund 5 and Collinder 70). These spectra have been observed by BOES in Bohyunsan observatory from 2009 November to 2011 Feburary, of which resolution is 45,000. We used IRAF for the data reduction (Bias subtraction, Flat-field division, and wavelength calibration) and DECH for the deriving the equivalent widths of 4 interstellar lines - Ca II K (3934${\AA}$), Na I D (5890, 5896${\AA}$) and K I (7698${\AA}$) and the column densities of those elements in LISM toward the clusters. The results of this study provide clues for better understanding of the LISM toward these clusters.

  • PDF

THE STUDY OF SCATTERING IN THE ISM WITH HIGH RESOLUTION OBSERVATIONS OF OH MASERS

  • Migenes, Victor;Slysh, V.I.;Velasco, A.E.Ruis;Villalpando, S.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.4
    • /
    • pp.131-132
    • /
    • 2007
  • The research of OH maser emission sources with high angular resolution is complicated by the effects of interstellar scattering: more over, most of the OH maser sources are located in the galactic plane where the scattering is largest. However, the data available from pulsar studies on the spatial distribution of the amount of scattering indicate that there is a strong non-uniformity in the distribution of the amount of scattering material. There are directions in the galactic plane where the scattering is an order of magnitude higher than the average, as well as directions where the scattering is much lower. The latter provide an opportunity to investigate OH masers with the full angular resolution offered by very long baseline interferometry instruments, like the VLBA, and measure their true angular size, shape and brightness temperature. We have observed approximately 100 OH maser sources, distributed all over the northern hemisphere, with the VLBA in order to study the scattering properties of the interstellar medium.

Effect of Partial Flow Reductions on DNAPL Source Dissolution Rate

  • Park, Eung-Yu;ParKer, Jeck C.
    • Proceedings of the KSEEG Conference
    • /
    • 2005.04a
    • /
    • pp.148-151
    • /
    • 2005
  • Field-scale DNAPL dissolution is controlled by the topology of DNAPL distributions with respect to the velocity field. A high resolution percolation model was developed and employed to simulate the distribution of DNAPL within source zones. Statistically anisotropic permeability values and capillary parameters were generated for 10${\times}$10${\times}$10 m domains at a resolution of 0.05 to 0.1 m for various statistical properties. TCE leakage was simulated at various rates and the distribution of residual DNAPL in 'fingers' and 'lenses' was computed. Variations in finger and lens geometries, frequencies, average DNAPL saturations, and overall source topology were predicted to be strongly influenced by statistical properties of the medium as well as by injection rate and fluid properties. Model results were found to be consistent with observations from controlled DNAPL release experiments reported in the literature. The computed distributions of aquifer properties and DNAPL were utilized to perform high-resolution numerical simulations of groundwater flow and dissolved transport. Simulations were performed to assess the effect of grout or foam injection in bore holes within the source zone and of shallow point-releases of fluids with various properties on dissolution in DNAPL dissolution rate, even for widely spaced injection points. The results indicate that measures that induced partial flow reductions through DNAPL source zones can significantly decrease dissolution rates from residual DNAPL. The benefit from induced partial flow reductions is two-fold: 1) local flow reduction in DNAPL contaminated zones reduces mass transfer rates, and 2) contaminant flux reductions occur due to the decrease in groundwater velocity

  • PDF

Delay Analysis of Carrier Sense Multiple Access with Collision Resolution

  • Choi, Hyun-Ho;Lee, In-Ho;Lee, Howon
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.275-285
    • /
    • 2015
  • To improve the efficiency of carrier sense multiple access (CSMA)-based medium access control (MAC) protocols, CSMA with collision resolution (CSMA/CR) has been proposed. In the CSMA/CR, a transmitting station can detect a collision by employing additional sensing after the start of a data transmission and then resolve the next collision that might occur by broadcasting a jam signal during a collision detection (CD) period. In this paper, we analyze the delay of a CSMA/CR based on a generic p- persistent CSMA model and obtain the minimum achievable delay of the CSMA/CR by finding the optimal length of the CD period according to the number of contending stations. Through this delay analysis, we also investigate the throughput-delay characteristics of the CSMA/CR protocol according to various parameters. Analysis and simulation results show that the CSMA/CR has a considerably lower delay and its throughput-delay characteristic is significantly improved than the conventional CSMA/CA and wireless CSMA/CD protocols.

IGRINS and the Revolution in High Resolution Infrared Spectroscopy

  • Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.41.4-42
    • /
    • 2015
  • The Immersion Grating Infrared Spectrograph (IGRINS) is the first of a new generation of infrared instruments with high sensitivity, high spectral resolution, and broad spectral grasp. IGRINS, a joint project of the University of Texas and the Korea Astronomy and Space Science Institute, designed and constructed by a team at UT, KASI, and Kyung Hee University, has been available to the Korean and Texas communities on the McDonald Observatory 2.7m telescope since 2014 September. On this modest-sized telescope, the instrument has 30 times the spectral grasp of CRIRES at the 8m VLT and is only slightly less sensitive. Already, Korean and UT astronomers have produced a raft of new results in star formation studies, investigations of the interstellar medium, and the nature of cool stars. Several programs are under way to detect and study the atmospheres of exoplanets. We will present highlights from the first 6 months of IGRINS operations and look at the future of IR spectroscopy both with IGRINS and with GMTNIRS, a UT/KASI/KHU instrument for the Giant Magellan Telescope.

  • PDF

Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring

  • Coulon, Romain;Dumazert, Jonathan;Tith, Tola;Rohee, Emmanuel;Boudergui, Karim
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1489-1494
    • /
    • 2017
  • The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and reliable information are required. High-pressure xenon (HPXe) chambers have range of resolution and efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl), CdZnTe, and $LaBr_3:Ce$. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environmental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe detector was performed to minimize the detector capacitance and the required power supply. Simulations were done with the MCNPX2.7 particle transport code to estimate the intrinsic efficiency of the HPXe detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide perspective for further analysis.