• Title/Summary/Keyword: medium-coupling

Search Result 142, Processing Time 0.02 seconds

A Study on the Characteristics of High-Current Arc Plasma Influenced by Axial Magnetic Field (축방향 자기장에 의한 대전류 아크 특성에 관한 연구)

  • Cho, S.H.;Lee, J.C.;Choi, M.J.;Kwon, J.R.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2515-2518
    • /
    • 2008
  • The vacuum interrupter (VI) is widely used in medium-voltage switching circuits due to its abilities and advantages as an environmental friendly circuit breaker. An understanding of the vacuum arc flow phenomena is very important for improving the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and the thermal flow fields, simultaneously. In this study, we have investigated arc plasma constriction phenomena and an effect of AMF on the arc plasma with the high-current vacuum arcs for the cup-type AMF electrode by using a commercial finite element analysis (FEA) package, ANSYS. The simulation results applied with various AMFs and constant Joule heat generation show that strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. However, further studies are required on the two-way coupling method and radiation model for arc plasma in order to accomplish the advanced analysis method.

  • PDF

Effects of Sputtering Parameters on the Properties of Co/Pd Multilayered Films

  • Shin, J. N.;Hong, D. H.;Lee, T. D.
    • Journal of Magnetics
    • /
    • v.8 no.4
    • /
    • pp.146-148
    • /
    • 2003
  • Multilayered films of Co/Pd have been studied as a candidate material for a high density perpendicular recording medium due to higher anisotropy energy. However, high exchange coupling among grains results in large transition noise. To reduce the exchange coupling and grain size, addition of 3rd elements and physical separation of grains have been attempted. In the present paper, effects of sputtering pressure, Co sublayer thickness and Pd underlayer thickness on magnetic properties and microstructures were studied. It was found that by increasing sputtering pressure from 5 mTorr to 25 mTorr, Ms decreased to one half and coercivity increased more than 5000 Oe. The increase of the coercivity is associated with physical separation of grains by high pressure sputtering. Ms per volume of Co for Co/Pd multilayered film deposited at 25 mTorr shows continuous decrease with increasing Co sublayer thickness. This was related to void formation and intermixing of Co/Pd interface. Also, effect of Pd underlayer thickness on magnetic properties will be discussed.

Multiple Decoupling Current Control Strategies for LCL Type Grid-Connected Converters Based on Complex Vectors under Low Switching Frequencies

  • Liu, Haiyuan;Shi, Yang;Guo, Yinan;Wang, Yingjie;Wang, Wenchao
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.1034-1044
    • /
    • 2019
  • In medium-voltage and high-voltage high-power converters, the switching devices need to operate at a low switching frequency to reduce power loss and increase the power capacity. This increases the delay of the signal sampling and PWM. It also makes the cross-couplings of the d-q current components more severe. In addition, the LCL filter has three cross-coupling loops and is prone to resonance. In order to solve these problems, this paper establishes a complex vector model of an LCL type grid-connected converter. Based on this model, two multiple decoupling current control strategies with passive damping / notch damping are proposed for the LCL type grid-connected converter. The proposed strategies can effectively eliminate the cross-couplings of the converter, achieve independent control of the d-q current components, expand the stable region and suppress the resonance of the LCL filter. Simulation and experimental results verify the correctness of the theoretical analysis and the feasibility of the proposed strategies.

GDNF secreted by pre-osteoclasts induces migration of bone marrow mesenchymal stem cells and stimulates osteogenesis

  • Yi, Sol;Kim, Jihee;Lee, Soo Young
    • BMB Reports
    • /
    • v.53 no.12
    • /
    • pp.646-651
    • /
    • 2020
  • Bone resorption is linked to bone formation via temporal and spatial coupling within the remodeling cycle. Several lines of evidence point to the critical role of coupling factors derived from pre-osteoclasts (POCs) during the regulation of bone marrow-derived mesenchymal stem cells (BMMSCs). However, the role of glial cell-derived neurotrophic factor (GDNF) in BMMSCs is not completely understood. Herein, we demonstrate the role of POC-derived GDNF in regulating the migration and osteogenic differentiation of BMMSCs. RNA sequencing revealed GDNF upregulation in POCs compared with monocytes/macrophages. Specifically, BMMSC migration was inhibited by a neutralizing antibody against GDNF in pre-osteoclast-conditioned medium (POC-CM), whereas treatment with a recombinant GDNF enhanced migration and osteogenic differentiation. In addition, POC-CM derived from GDNF knock-downed bone marrow macrophages suppressed BMMSC migration and osteogenic differentiation. SPP86, a small molecule inhibitor, inhibits BMMSC migration and osteogenic differentiation by targeting the receptor tyrosine kinase RET, which is recruited by GDNF into the GFRα1 complex. Overall, this study highlights the role of POC-derived GDNF in BMMSC migration and osteogenic differentiation, suggesting that GDNF regulates bone metabolism.

Effects of Process Variables and MAPP Coupling Agent on Properties of Wood Fiber-Polypropylene Fiber Composite by Turbulent Air Mixing (공정변수(工程變數)와 MAPP 결합제(結合劑)가 난기류(亂氣流) 혼합방식(混合方式)에 의하여 제조(製造)된 목섬유(木纖維)-폴리프로필렌섬유(纖維) 복합재(複合材)의 성질(性質)에 미치는 영향(影響))

  • Yoon, Hyoung-Un;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.76-86
    • /
    • 1998
  • Effects of processing variables and MAPP (maleic anhydride polypropylene) coupling agent on the properties of composite were discussed for turbulent-air-mixed woodfiber-polypropylenefiber composites. In this research, density, composition ratio, and mat moisture content were established as processing variables, and emulsified MAPP prepared by direct pressure method was incorporated as the coupling agent. And the turbulent air mixer, which was improved in function through alteration of our previous fiber mixer, was used to mix wood fibers and polypropylene fibers. At the addition level of 1% MAPP, based on oven-dried wood fiber weight, woodfiber-polypropylenefiber composites generally showed enhanced the physical and mechanical properties. And composites with low to medium densities of 0.6 to 0.8g/$cm^3$ greatly increased in these property values than with high densities of 1.0g/$cm^3$ or more by adding 1 % MAPP. Thus, MAPP addition was thought to be an effective way of enhancing properties for nonwoven web composites. At the mat moisture contents of 5 to 20%, however, the physical and mechanical properties were not enhanced by adding 1% MAPP. In the composites containing 15% polypropylene fibers, the lowest thickness swelling and water absorption values were observed at the 1% MAPP level. The addition of more than 1% MAPP had the adverse effect on the physical and mechanical properties of composites.

  • PDF

Global Production Network and Coupling Strategy of IT Industrial Clusters in Dongguan, China (중국 동관 IT 산업 클러스터의 글로벌 생산 네트워크 및 커플링 전략)

  • Lee, Sang-Bin;Sung, Eul-Hyun;Yeom, Myung-Bae
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.39-46
    • /
    • 2017
  • Dongguan City of Guangdong province, one of the core areas of the Pearl River Delta, has also pursued economic development through the geographical advantage close to Hong Kong. In the early 1980s, small and medium-sized multinational corporations related to home appliances industry from Hong Kong invested to the Dongguan area and set up a production factory. In the mid-1990s, as Taiwanese PC manufacturers invested, local industrial clusters have developed in Dongguan with core of the IT, PC components and electronic industries. The case of the IT industrial cluster in Dongguan is a typical example of the development of Chinese manufacturing industry after the reform of China. This paper focused on the coupling strategy case of Dongguan City industrial cluster in Guangdong province, and theoretically compared the endogenous growth factor analysis(NMID) of regional industrial development with the regional differentiation of industry based on external linkage with global production network(GPN).

Compensation of Unbalanced PCC Voltage in Off-shore Wind Farms of PMSG Type Turbine

  • Kang, Jayoon;Han, Daesu;Suh, Yongsug;Jung, Byoungchang;Kim, Jeongjoong;Park, Jonghyung;Choi, Youngjoon
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.215-216
    • /
    • 2014
  • This paper proposes a control algorithm for permanent magnet synchronous generator with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage offshore wind power system under unbalanced grid conditions. The proposed control algorithm particularly compensates for the unbalanced grid voltage at the point of common coupling in a collector bus of offshore wind power system. This control algorithm has been formulated based on the symmetrical components in positive and negative rotating synchronous reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power are described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of ac input current is injected to the point of common coupling in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm makes it possible to provide a balanced voltage at the point of common coupling resulting in the generated power of high quality from offshore wind power system under unbalanced network conditions.

  • PDF

Understanding Physical Mechanism of 2022 European Heat Wave (2022년 발생한 기록적인 유럽 폭염 발생의 역학적 원인 규명 연구)

  • Ju Heon Kim;Gun-Hwan Yang;Hyun-Joon Sung;Jung Hyun Park;Eunkyo Seo
    • Atmosphere
    • /
    • v.33 no.3
    • /
    • pp.307-317
    • /
    • 2023
  • This study investigates the physical mechanisms that contributed to the 2022 European record-breaking heatwave throughout May-August (MJJA). The European climate has experienced surface warming and drying in the recent decade (1979~2022) which influences the development of the 2022 European heatwave. Since its spatial pattern resembles the 2003 European heatwave which is a well-known case developed by the strong coupling of near-surface conditions to land surface processes, the 2022 heatwave is compared with the 2003 case. Understanding heatwave development is carried out by the European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis version 5 (ERA5) and daily maximum surface temperature released by NCEP (National Centers for Environmental Prediction) CPC (Climate Prediction Center). The results suggest that the persistent high pressure along with clear sky tends to increase the downward shortwave radiation which leads to enhanced sensible heat flux with the land surface dryness. Terrestrial Coupling Index (TCI), a process-based multivariate metric, is employed to quantitatively measure segmented feedback processes, separately for the land, atmosphere, and two-legged couplings, which appears to the development of the 2022 heatwave, can be viewed as an expression of the recent trends, amplified by internal land-atmosphere interactions.

Influence of Electric Potential on Structure and Function of Biofilm in Wastewater Treatment Reactor : Bacterial Oxidation of Organic Carbons Coupled to Bacterial Denitrification

  • NA BYUNG KWAN;SANG BYUNG IN;PARK DAE WON;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1221-1228
    • /
    • 2005
  • Carbon electrode was applied to a wastewater treatment system as biofilm media. The spatial distribution of heterotrophic bacteria in aerobic wastewater biofilm grown on carbon electrode was investigated by scanning electron microscopy, atomic force microscopy, and biomass measurement. Five volts of electric oxidation and reduction potential were charged to the carbon anode and cathode of the bioelectrochemical system, respectively, but were not charged to electrodes of a conventional system. To correlate the biofilm architecture of bacterial populations with their activity, the bacterial treatment efficiency of organic carbons was measured in the bioelectrochemical system and compared with that in the conventional system. In the SEM image, the biofilm on the anodic medium of the bioelectrochemical system looked intact and active; however, that on the carbon medium of the conventional system appeared to be shrinking or damaging. In the AFM image, the thickness of biofilm formed on the carbon medium was about two times of those on the anodic medium. The bacterial treatment efficiency of organic carbons in the bioelectrochemical system was about 1.5 times higher than that in the conventional system. Some denitrifying bacteria can metabolically oxidize $H_{2}$, coupled to reduction of $NO_{3}^{-}\;to\;N_{2}$. $H_{2}$ was produced from the cathode in the bioelectrochemical system by electrolysis of water but was not so in the conventional system. The denitrification efficiency was less than $22\%$ in the conventional system and more than $77\%$ in the bioelectrochemical system. From these results, we found that the electrochemical coupling reactions between aerobic and anaerobic reactors may be a useful tool for improvement of wastewater treatment and denitrification efficiency, without special manipulations such as bacterial growth condition control, C/N ratio (the ratio of carbon to nitrogen) control, MLSS returning, or biofilm refreshing.

A Short Wavelength Filter Based on Dissimilar Dispersive Property Between a Thermally Expanded Cored Fiber and an External Medium (측면 연마된 열확산 코어 광섬유와 외부 물질의 분산 특성 차이를 이용한 단파장 통과 필터)

  • Kim, Kwang-Taek;Lee, Kyu-Hyo;Shin, Eun-Soo;Hwangbo, Seung;Sohn, Kyung-Rak;Kim, Jeong-Geun;Lee, Dong-Ho;Song, Jae-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.494-499
    • /
    • 2005
  • We have demonstrated a fiber short-wavelength filter with a good cut-off property using dissimilar dispersive properties between? a thermally expanded cored fiber and an external medium. Side-polishing is applied to coupling between the fiber and the external medium. The experimental results revealed that the bend edge wavelength can be adjusted by controlling the degree of core expansion. Futhermore, the sharpness of wavelength response? was significantly? improved by employing expanded core fiber instead of a conventional single mode fiber. Tuning range of the band edge wavelength exceeded 400 m based on thermo-optic effect of the external medium.