• Title/Summary/Keyword: medium-and low-rise

Search Result 76, Processing Time 0.021 seconds

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.

Ridge and field tile aerodynamics for a low-rise building: a full-scale study

  • Tecle, Amanuel;Bitsuamlak, Girma T.;Suskawang, Nakin;Chowdury, Arindam Gan;Fuez, Serge
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.301-322
    • /
    • 2013
  • Recent major post-hurricane damage assessments in the United States have reported that the most common damages result from the loss of building roof coverings and subsequent wind driven rain intrusion. In an effort to look further into this problem, this paper presents a full-scale (Wall of Wind --WoW--) investigation of external and underneath wind pressures on roof tiles installed on a low-rise building model with various gable roofs. The optimal dimensions for the low-rise building that was tested with the WOW are 2.74 m (9 ft) long, 2.13 m (7 ft) wide, and 2.13 m (7 ft) high. The building is tested with interchangeable gable roofs at three different slopes (2:12; 5:12 and 7:12). The field tiles of these gable roofs are considered with three different tile profiles namely high (HP), medium (MP), and low profiles (LP) in accordance with Florida practice. For the ridge, two different types namely rounded and three-sided tiles were considered. The effect of weather block on the "underneath" pressure that develops between the tiles and the roof deck was also examined. These tests revealed the following: high pressure coefficients for the ridge tile compared to the field tiles, including those located at the corners; considerably higher pressure on the gable end ridge tiles compared to ridge tiles at the middle of the ridge line; and marginally higher pressure on barrel type tiles compared to the three-sided ridge tiles. The weather blocking of clay tiles, while useful in preventing water intrusion, it doesn't have significant effect on the wind loads of the field tiles. The case with weather blocking produces positive mean underneath pressure on the field tiles on the windward side thus reducing the net pressures on the windward surface of the roof. On the leeward side, reductions in net pressure to a non-significant level were observed due to the opposite direction of the internal and external pressures. The effect of the weather blocking on the external pressure on the ridge tile was negligible.

Economic Comparison of Medium Capacity and Multi Boiler System Applied to Military Officer Housing (군간부 숙소에 적용한 중용량 및 멀티보일러 시스템의 경제성 비교)

  • Kim, Min-yong;Kim, Young Il;Chung, Kwang Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.81-88
    • /
    • 2015
  • In midst of electrical energy consumption on the rise due to the industrial development and the improved quality of living, medium capacity and multi boilers which use gas that is comparatively low cost and can be supplied reliably are simulated for energy consumption using the partial load data obtained from the experiment. Economic analysis that considers initial and operation costs is carried out based on the Annual equal payment method.

Thermal radiation and some physical combined effects on an asymmetric peristaltically vertical channel of nanofluid flow

  • Amira S. Awaad;Zakaria M. Gharsseldien
    • Advances in nano research
    • /
    • v.16 no.6
    • /
    • pp.579-591
    • /
    • 2024
  • This study explained the effects of radiation, magnetic field, and nanoparticle shape on the peristaltic flow of an Upper-Convected Maxwell nanofluid through a porous medium in an asymmetric channel for a better understanding of cooling and heating mechanisms in the presence of magnetic fields. These phenomena are modeled mathematically as a system of non-linear differential equations, that are solved under long-wavelength approximation and low Reynolds number conditions using the perturbation method. The results for nanofluid and temperature described the behavior of the pumping characteristics during their interaction with (the vertical position, thermal radiation, the shape of the nanoparticle, and the magnetic field) analytically and explained graphically. Also, the combined effects of thermal radiation parameters and some physical parameters on pressure rise, pressure gradient, velocity, and heat distribution are pointed out. Qualitatively, a reverse velocity appears with combined high radiation and Grashof number or combined high radiation and low volume flow rate. At high radiation, the spherical nanoparticle shape has the greatest effect on heat distribution.

Response Modification Factors of Inverted V-type Special Concentrically Braced Frames (역V형 특수가새골조의 반응수정계수)

  • 김진구;남광희
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • The overstrength factor and the ductility factor are the two important factors that determine response modification factors used in current seismic codes, In this paper the overstrength and ductility factors of special concentric braced frames are determined by performing pushover analysis of model structures with various stories and span lengths. and by using those factors the response modification factors are obtained. According to the analysis results. the overstrength and the ductility factors are larger than the values proposed by the codes in low-rise structures. and the opposite is true in medium to high-rise structures, It is also found that the factors increase as the height of structures decreases and the span length increases.

A Model for Analyzing the Performance of Wireless Multi-Hop Networks using a Contention-based CSMA/CA Strategy

  • Sheikh, Sajid M.;Wolhuter, Riaan;Engelbrecht, Herman A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2499-2522
    • /
    • 2017
  • Multi-hop networks are a low-setup-cost solution for enlarging an area of network coverage through multi-hop routing. Carrier sense multiple access with collision avoidance (CSMA/CA) is frequently used in multi-hop networks. Multi-hop networks face multiple problems, such as a rise in contention for the medium, and packet loss under heavy-load, saturated conditions, which consumes more bandwidth due to re-transmissions. The number of re-transmissions carried out in a multi-hop network plays a major role in the achievable quality of service (QoS). This paper presents a statistical, analytical model for the end-to-end delay of contention-based medium access control (MAC) strategies. These strategies schedule a packet before performing the back-off contention for both differentiated heterogeneous data and homogeneous data under saturation conditions. The analytical model is an application of Markov chain theory and queuing theory. The M/M/1 model is used to derive access queue waiting times, and an absorbing Markov chain is used to determine the expected number of re-transmissions in a multi-hop scenario. This is then used to calculate the expected end-to-end delay. The prediction by the proposed model is compared to the simulation results, and shows close correlation for the different test cases with different arrival rates.

Anchored blind bolted composite connection to a concrete filled steel tubular column

  • Agheshlui, Hossein;Goldsworthy, Helen;Gad, Emad;Mirza, Olivia
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.115-130
    • /
    • 2017
  • A new type of moment-resisting bolted connection was developed for use in composite steel- concrete construction to connect composite open section steel beams to concrete filled steel square tubular columns. The connection was made possible using anchored blind bolts along with two through bolts. It was designed to act compositely with the in-situ reinforced concrete slab to achieve an enhanced stiffness and strength. The developed connection was incorporated in the design of a medium rise (five storey) commercial building which was located in low to medium seismicity regions. The lateral load resisting system for the design building consisted of moment resisting frames in two directions. A major full scale test on a sub-assembly of a perimeter moment-resisting frame of the model building was conducted to study the system behaviour incorporating the proposed connection. The behaviour of the proposed connection and its interaction with the floor slab under cyclic loading representing the earthquake events with return periods of 500 years and 2500 years was investigated. The proposed connection was categorized as semi rigid for unbraced frames based on the classification method presented in Eurocode 3. Furthermore, the proposed connection, composite with the floor slab, successfully provided adequate lateral load resistance for the model building.

Robotics in Construction: Framework and Future Directions

  • Aparicio, Claudia Cabrera;Balzan, Alberto;Trabucco, Dario
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.105-111
    • /
    • 2020
  • In recent years the construction sector has grown significantly in terms of investment and research on robotics and automation, yet it is still a low-tech and disjointed industry. One of the main scopes of this paper is to determine how robotic automation can provide the answers to the needs this industry has. To that end, an overall framework and development agenda of current technological innovation in the field has been outlined. Possible drawbacks and driving forces in the development of robots in the construction site have been identified. In addition, the review provides for state-of-the-art policies and regulations, as well as the short and medium-term outlook in different markets and countries. Ultimately, the forecast impact on traditional processes, construction sites, emerging technologies and related professions has been summarized in order to delineate prospective repercussions and future directions towards self-sufficiency.

Assessment of seismic fragility curves for existing RC buildings in Algiers after the 2003 Boumerdes earthquake

  • Mehani, Youcef;Bechtoula, Hakim;Kibboua, Abderrahmane;Naili, Mounir
    • Structural Engineering and Mechanics
    • /
    • v.46 no.6
    • /
    • pp.791-808
    • /
    • 2013
  • The main purpose of this paper is to develop seismic fragility curves for existing reinforced concrete, RC, buildings based on the post earthquake field survey and the seismic performance using capacity design. Existing RC buildings constitute approximately 65% of the total stock in Algiers. This type of buildings, RC, was widely used in the past and chosen as the structural type for the future construction program of more than 2 millions apartments all over Algeria. These buildings, suffered moderate to extensive damage after the 2003 Boumerdes earthquake, on May 21st. The determination of analytical seismic fragility curves for low-rise and mid-rise existing RC buildings was carried out based on the consistent and complete post earthquake survey after that event. The information on the damaged existing RC buildings was investigated and evaluated by experts. Thirty four (34) communes (districts) of fifty seven (57), the most populated and affected by earthquake damage were considered in this study. Utilizing the field observed damage data and the Japanese Seismic Index Methodology, based on the capacity design method. Seismic fragility curves were developed for those buildings with a large number data in order to get a statistically significant sample size. According to the construction period and the code design, four types of existing RC buildings were considered. Buildings designed with pre-code (very poor structural behavior before 1955), Buildings designed with low code (poor structural behavior, between 1955-1981), buildings designed with medium code (moderate structural behavior, between 1981-1999) and buildings designed with high code (good structural behavior, after 1999).

Parametric study on energy demands for steel special concentrically braced frames

  • Dogru, Selcuk;Aksar, Bora;Akbas, Bulent;Shen, Jay
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.265-276
    • /
    • 2017
  • Structures are designed in such a way that they behave in a nonlinear manner when subject to strong ground motions. Energy concepts have been widely used to evaluate the structural performance for the last few decades. Energy based design can be expressed as the balance of energy input and the energy dissipation capacity of the structure. New research is needed for multi degree of freedom systems (MDOFs)-real structures- within the framework of the energy based design methodology. In this paper, energy parameters are evaluated for low-, medium- and high-rise steel special concentrically braced frames (SCBFs) in terms of total energy input and hysteretic energy. Nonlinear dynamic time history analyses are carried out to assess the variation of energy terms along the height of the frames. A seismic energy demand spectrum is developed and hysteretic energy distributions within the frames are presented.