• Title/Summary/Keyword: medium layer

Search Result 732, Processing Time 0.028 seconds

Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis

  • Kargar, Masood;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.465-477
    • /
    • 2018
  • In this research, vibration and smart control analysis of a concrete foundation reinforced by $SiO_2$ nanoparticles and covered by piezoelectric layer on soil medium is investigated. The soil medium is simulated with spring constants and the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. With considering first order shear deformation theory, the total potential energy of system is calculated and by means of Hamilton's principle in three displacement directions and electric potential, the six coupled equilibrium equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of applied voltage, volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with applying negative voltage, the frequency of structure is increased.

Stochastic MAC-layer Interference Model for Opportunistic Spectrum Access: A Weighted Graphical Game Approach

  • Zhao, Qian;Shen, Liang;Ding, Cheng
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.411-419
    • /
    • 2016
  • This article investigates the problem of distributed channel selection in opportunistic spectrum access networks from a perspective of interference minimization. The traditional physical (PHY)-layer interference model is for information theoretic analysis. When practical multiple access mechanisms are considered, the recently developed binary medium access control (MAC)-layer interference model in the previous work is more useful, in which the experienced interference of a user is defined as the number of competing users. However, the binary model is not accurate in mathematics analysis with poor achievable performance. Therefore, we propose a real-valued one called stochastic MAC-layer interference model, where the utility of a player is defined as a function of the aggregate weight of the stochastic interference of competing neighbors. Then, the distributed channel selection problem in the stochastic MAC-layer interference model is formulated as a weighted stochastic MAC-layer interference minimization game and we proved that the game is an exact potential game which exists one pure strategy Nash equilibrium point at least. By using the proposed stochastic learning-automata based uncoupled algorithm with heterogeneous learning parameter (SLA-H), we can achieve suboptimal convergence averagely and this result can be verified in the simulation. Moreover, the simulated results also prove that the proposed stochastic model can achieve higher throughput performance and faster convergence behavior than the binary one.

Material and Manufacturing Properties of Bracket Mural Paintings of Daeungjeon Hall in Gaeamsa Temple, Buan

  • Lee, Hwa Soo;Yu, Yeong Gyeong;Han, Kyeong-Soon
    • Journal of Conservation Science
    • /
    • v.38 no.1
    • /
    • pp.45-54
    • /
    • 2022
  • This study examined the production technique of bracket murals in Daeungjeon Hall, Gaeamsa Temple by conducting a analysis of their wall structure, material characteristics, and painting layers. Wall was a single-branch structure with support layer, middle layer, finishing layer, and painting layer. The support layer, middle layer and finishing layer, were produced by mixing sand (quartz, feldspars etc.), and loess. The ratio of above medium sand to below fine sand was approximately 0.7 : 9.3 in the support layer, 4 : 6 in the middle layer and 6 : 4 in the finishing layer, which had a more percentage of above medium sand than the support layer. The analysis of the painting layer showed that natural soil pigment was used to establish a relatively ground layer of up to 50 ㎛, and pigments such as Lead sulfate, atacamite and mercury sulfide were painted on top of the layer. This study's results confirmed that the bracket mural paintings in Gaeamsa Temple are within the category of the production style of murals during the Joseon period. However, the points that the middle layer was formed several times, the significant difference in particle size distribution between the wall, and the absence of chopped straw in the support layer are a feature of bracket mural paintings in Gaeamsa Temple. These properties of murals as material and structure may be viewed for correlation with the degree of damage to wall structure of mural painting and would serve as an important reference to diagnosis the conservation conditions of murals or prepare conservation treatments.

A Strady-State One-Dimensional Analysis of an Oxygen Electrode in Stationary and Flowing Liquid (정체 및 유동액체에서 산소전극의 안정상태 일차원적 해석)

  • 김태진
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.150-156
    • /
    • 1989
  • The chaacterisitics of a commercial membrance-coverd electrode in air-saturated saline solution were investigated in terms of a steadystate one-dimensional model. The electrode system miiersed in an aqueous medium consists of three layers: an external concentration boundary layer, a membrance, and an inner electrolyte layer. The membrance can be permeabld to the water and impermeable to the ionic species. In stationary midium, the water migrates from the external medium to the inner electrolyte layer until a thermodynamic equilibrium is reached. In a following midium, however, there is a reverse direction of water movement due to the hyrodynamic pressure differential until both thickness of the electrolyte layer and the membrance are equal.

  • PDF

CONVECTION IN A HORIZONTAL POROUS LAYER UNDERLYING A FLUID LAYER IN THE PRESENCE OF NON LINEAR MAGNETIC FIELD ON BOTH LAYERS

  • Bukhari, Abdul-Fattah K.;Abdullah, Abdullah A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2007
  • A linear stability analysis applied to a system consist of a horizontal fluid layer overlying a layer of a porous medium affected by a vertical magnetic field on both layers. Flow in porous medium is assumed to be governed by Darcy's law. The Beavers-Joseph condition is applied at the interface between the two layers. Numerical solutions are obtained for stationary convection case using the method of expansion of Chebyshev polynomials. It is found that the spectral method has a strong ability to solve the multilayered problem and that the magnetic field has a strong effect in his model.

  • PDF

APP-MAC-PHY Cross-Layer Video Streaming Technique over Wireless Channels

  • Park, Jaeyoung;Kim, Jaekwon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.398-400
    • /
    • 2014
  • In this letter, we propose a cross-layer technique jointly considering modulation coding schemes (MCSs) of medium access control (MAC) layer, source significance information (SSI) and error concealment unit of application (APP) layer, and channel quality information (CQI) of physical (PHY) layer. We demonstrate the improved video quality by the proposed technique when H.264 videos are streamed over Rayleigh fading wireless channels.

A study on surface wave dispersion due to the effect of soft layer in layered media

  • Roy, Narayan;Jakka, Ravi S.;Wason, H.R.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.775-791
    • /
    • 2017
  • Surface wave techniques are widely used as non-invasive method for geotechnical site characterization. Field surface wave data are collected and analyzed using different processing techniques to generate the dispersion curves, which are further used to extract the shear wave velocity profile by inverse problem solution. Characteristics of a dispersion curve depend on the subsurface layering information of a vertically heterogeneous medium. Sometimes soft layer can be found between two stiff layers in the vertically heterogeneous media, and it can affect the wave propagation dramatically. Now most of the surface wave techniques use the fundamental mode Rayleigh wave propagation during the inversion, but this may not be the actual scenario when a soft layer is present in a vertically layered medium. This paper presents a detailed and comprehensive study using finite element method to examine the effect of soft layers which sometimes get trapped between two high velocity layers. Determination of the presence of a soft layer is quite important for proper mechanical characterization of a soil deposit. Present analysis shows that the thickness and position of the trapped soft layer highly influence the dispersion of Rayleigh waves while the higher modes also contribute in the resulting wave propagation.

Assessing Efficiency of Handoff Techniques for Acquiring Maximum Throughput into WLAN

  • Mohsin Shaikha;Irfan Tunio;Baqir Zardari;Abdul Aziz;Ahmed Ali;Muhammad Abrar Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.172-178
    • /
    • 2023
  • When the mobile device moves from the coverage of one access point to the radio coverage of another access point it needs to maintain its connection with the current access point before it successfully discovers the new access point, this process is known as handoff. During handoff the acceptable delay a voice over IP application can bear is of 50ms whereas the delay on medium access control layer is high enough that goes up to 350-500ms. This research provides a suitable methodology on medium access control layer of the IEEE 802.11 network. The medium access control layer comprises of three phases, namely discovery, reauthentication and re-association. The discovery phase on medium access control layer takes up to 90% of the total handoff latency. The objective is to effectively reduce the delay for discovery phase to ensure a seamless handoff. The research proposes a scheme that reduces the handoff latency effectively by scanning channels prior to the actual handoff process starts and scans only the neighboring access points. Further, the proposed scheme enables the mobile device to scan first the channel on which it is currently operating so that the mobile device has to perform minimum number of channel switches. The results show that the mobile device finds out the new potential access point prior to the handoff execution hence the delay during discovery of a new access point is minimized effectively.

Effect of Boundary Layer Thickness on the Flow Around a Rectangular Prism (직사각형 프리즘 주위의 유동구조에 대한 경계층 두께의 영향)

  • Ji, Ho-Seong;Kim, Kyung-Chun;Lee, Seung-Hong;Boo, Jeong-Sook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.893-901
    • /
    • 2002
  • Effect of boundary layer thickness on the flow characteristics around a rectangular prism has been investigated by using a PIV(Particle Image Velocimetry) technique. Three different boundary layers(thick, medium and thin)were generated in the Atmospheric Boundary Layer Wind Tunnel at Pusan National University. The thick boundary layer having 670 mm thickness was generated by using spires and roughness elements. The medium thickness of boundary layer($\delta$=270 mm) was the natural turbulent boundary layer at the test section floor with fairly long developing length(18 m). The thin boundary layer($\delta$=36.5 mm) was generated on the smooth panel elevated 70cm from the wind tunnel floor. The Reynolds number based on the free stream velocity(3 ㎧) and the height of the model(40 mm) was 7.9$\times$10$^3$. The mean velocity vector fields and turbulent kinetic energy distributions were measured and compared. The effect of boundary layer thickness was clearly observed not only in the length of separation bubble but also in the location of reattachment point. The thinner the boundary layer thickness, the higher the turbulent kinetic energy Peak around the model roofbecame. It is strongly recommended that the height ratio between the model and the approaching boundary layer thickness should be encountered as a major parameter.

Study on the Wear Resistant Characteristics of Medium Carbon Alloy Steel Plasma-Nitrided (플라즈마 질화처리된 중탄소합금강의 내마모특성에 관한 연구)

  • Cho, H.S.;Roh, Y.S.;Shin, H.K.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.4
    • /
    • pp.215-223
    • /
    • 1992
  • This study has been performed to investigate into some effects of temperature, gas mixing ratio and time on the optical microstructure, hardness and wear characteristics of medium carbon alloy steel treated by plasma nitriding. The results obtained from the experiment are summarized as follows: (1) Optical micrographs of AISI 4140 steel plasma-nitrided by the double stage technique have revealed that the nitrided layer is composed of the compound layer and the diffusion layer. The variation in temperature at the first stage gives effects, on the formation of compound layer and the growth rate is shown to be relatively fast at $460^{\circ}C$. (2) The thickness of compound layer has been found to increase with increasing nitrogen percentage in the gas mixture and the holding time. It is therefore recommended that a shorter holding time and a lower nitrogen percentage are more effective to produce a tougher compound layer and a diffusion layer only. (3) X-ray diffraction analysis for AISI 4140 steel has shown that the compound layer consist of ${\gamma}^{\prime}-Fe_4N$ and ${\alpha}-Fe$ and that tough compound layer diffustion layer only can be obtained by the double stage plasmanitriding process. (4) There is also a tendency that the total hardened layer depth increases with increasing temperature, time and nitrogen percentage in the first stage during the double stage plasma nitriding. (5) The wear resistance of plasma nitrided specimens has been found thobe considerably increased compared to the untreated specimens and the amount of increment has appeared to increase further with increasing nitriding temperature, holding time and notrogen percentage of gas mixture in the first stage treatment.

  • PDF