• Title/Summary/Keyword: medium access control (MAC)

Search Result 360, Processing Time 0.021 seconds

Terminal-Assisted Hybrid MAC Protocol for Differentiated QoS Guarantee in TDMA-Based Broadband Access Networks

  • Hong, Seung-Eun;Kang, Chung-Gu;Kwon, O-Hyung
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.311-319
    • /
    • 2006
  • This paper presents a terminal-assisted frame-based packet reservation multiple access (TAF-PRMA) protocol, which optimizes random access control between heterogeneous traffic aiming at more efficient voice/data integrated services in dynamic reservation TDMA-based broadband access networks. In order to achieve a differentiated quality-of-service (QoS) guarantee for individual service plus maximal system resource utilization, TAF-PRMA independently controls the random access parameters such as the lengths of the access regions dedicated to respective service traffic and the corresponding permission probabilities, on a frame-by-frame basis. In addition, we have adopted a terminal-assisted random access mechanism where the voice terminal readjusts a global permission probability from the central controller in order to handle the 'fair access' issue resulting from distributed queuing problems inherent in the access network. Our extensive simulation results indicate that TAF-PRMA achieves significant improvements in terms of voice capacity, delay, and fairness over most of the existing medium access control (MAC) schemes for integrated services.

  • PDF

A bidirectional full duplex medium access control protocol for underwater acoustic networks (수중 음향 네트워크를 위한 양방향 전이중 매체 접속 제어 프로토콜)

  • Kang, Sung Min;Hwang, Ho Young;Cho, Ho-Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.3
    • /
    • pp.211-217
    • /
    • 2017
  • In this paper, we propose a bidirectional full duplex MAC (Medium Access Control) protocol for underwater acoustic networks. An underwater sensor node can set a back-off timer according to the priority of transmission. When the back-off timer expires, the underwater sensor node acquires a transmission opportunity. If a source node wants to send data to a destination node, it broadcasts RTS (Request-To-Send) including ID of the destination node to neighbor nodes. The destination node receiving RTS sends CTS (Clear-To-Send) to the source node to inform the bidirectional full duplex communication. After the source node receives CTS, the source node and the destination node can send the data to each other. In the underwater environment, the existing MAC protocol may take a lot of time for successful transmission of data due to long underwater propagation delay. On the other hand, the proposed bidirectional full duplex MAC protocol improves the throughput by shortening the time for successful transmission of data. In this paper, we analyze the throughput of the proposed bidirectional full duplex MAC protocol. In addition, we show that the proposed bidirectional full duplex MAC protocol has better performance in the presence of the long underwater propagation delay compared with existing MAC protocols for underwater environments.

Medium Access Control Protocols for Full-Duplex Communications in WLAN Systems: Approaches and Challenges (무선랜 시스템에서 전이중 통신을 위한 MAC 프로토콜 분석)

  • Kim, Wonjung;Song, Taewon;Kim, Taeyoon;Pack, Sangheon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1276-1285
    • /
    • 2015
  • Full-duplex communications have emerged as a key technology for next-generation wireless local area networks (WLANs). Although the key enabling technology for full-duplex communications is the self-interference cancellation (SIC) technique in the physical layer, the employment of full-duplex communications has huge potentials to substantially increase the throughput at the medium access control (MAC) layer. At the same time, full-duplex communications pose non-trivial challenges to the MAC protocol design. In this article, we first identify salient problems in supporting full-duplex communications in WLAN MAC protocols. After that, we survey the state-of-the art to address those problems and analyze their pros and cons. Finally, we present open research challenges to improve the effectiveness of full-duplex communications in WLANs.

p-Persistent MAC Protocol for WDM Ring Networks

  • So, Won-Ho;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9B
    • /
    • pp.589-597
    • /
    • 2007
  • In this paper, a WDM metro ring consisting of access nodes with $FT-FR^n$ (Fixed Transmitter - n Fixed Receivers) is considered. A trade-off exists between node throughput and transmission fairness because the access nodes share wavelength channels. In order to eliminate the transmission unfairness and to increase throughput, the p-persistent medium access control (MAC) protocol is proposed: each node uses an empty optical slot to transmit a packet and make it available with the extraction of a transferred packet at the source access node, called source-stripping. The local empty slot can be used to transfer a head-of-line packet in the local buffer with probability p or it is used for the next downstream nodes with 1-p. The proposed MAC protocol provides better node throughput than the non-persistent protocol and exhibits better fairness index than the 1-persistent protocol in WDM ring networks. In addition, numerical analysis shows that the proposed MAC protocol maximizes the node throughput under uniform traffic conditions. For more detailed results, we use the network simulation under Poisson and self-similar traffic. Furthermore, unpredictable traffic constructed by the combination of the former and the latter is also considered. The reasonable probability of the p-persistent protocol for a given architecture can be determined through simulation.

A Discriminative Collision Resolution Scheme for Wireless MAC Protocol (무선 MAC 프로토콜을 위한 차별적인 충돌해결 기법)

  • Hwang, Seong-Ho;Han, Gi-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.5
    • /
    • pp.225-231
    • /
    • 2002
  • This paper proposes a discriminative collision resolution scheme for the wireless Medium Access Control (MAC) protocols to support the Quality of Service (QoS) requirements of real-time applications. Our scheme deals with access requests in different ways depending on their delay requirements. In our scheme, a Collision Resolution Period (CRP) is used to quickly resolve collisions for the delay sensitive traffic in order to support their delay requirements. Performance analysis and simulation results show that our algorithm may successfully meet the delay requirements of real time applications by reducing access delays and collisions.

Extended PCF(EPCF) Mechanism for Wireless LAN MAC (Wireless LAN MAC을 위한 Extended PCF(EPCF) 방법)

  • Lee, Ho-Seok;Suh, Byung-Suhl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.31-34
    • /
    • 2002
  • There are two kinds of network architectures in the IEEE 802.11:[1] distributed (ad-hoc) or centralized (infrastructure) wireless network. Centralized networks have an access point (base station) that can control the wireless medium access of stations in these networks. The 802.11 MAC protocol of an access point is the same as those of other stations in the contention period. This paper propose a novel MAC protocol of an access point to solve these problems. This MAC protocol adds a new contention-free period called EPCF (Extended PCF) to resolve accumulated data in the queue of an access point. Simulation results show that the new protocol performs better throughput than the 802.11 standard MAC with the less queue memory site requirement.

  • PDF

isMAC: An Adaptive and Energy-Efficient MAC Protocol Based on Multi-Channel Communication for Wireless Body Area Networks

  • Kirbas, Ismail;Karahan, Alper;Sevin, Abdullah;Bayilmis, Cuneyt
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1805-1824
    • /
    • 2013
  • Recently, the use of wireless body area networks (WBAN) has been increasing rapidly in medical healthcare applications. WBANs consist of smart nodes that can be used to sense and transmit vital data such as heart rate, temperature and ECG from a human body to a medical centre. WBANs depend on limited resources such as energy and bandwidth. In order to utilise these resources efficiently, a very well organized medium access control (MAC) protocol must be considered. In this paper, a new, adaptive and energy-efficient MAC protocol, entitled isMAC, is proposed for WBANs. The proposed MAC is based on multi-channel communication and aims to prolong the network lifetime by effectively employing (i) a collision prevention mechanism, (ii) a coordinator node (WCN) selection algorithm and (iii) a transmission power adjustment approach. The isMAC protocol has been developed and modelled, by using OPNET Modeler simulation software. It is based on a networking scenario that requires especially high data rates such as ECG, for performance evaluation purposes. Packet delay, network throughput and energy consumption have been chosen as performance metrics. The comparison between the simulation results of isMAC and classical IEEE 802.15.4 (ZigBee) protocol shows that isMAC significantly outperforms IEEE 802.15.4 in terms of packet delay, throughput and energy consumption.

Hierarchical Real-Time MAC Protocol for (m,k)-firm Stream in Wireless Sensor Networks

  • Teng, Zhang;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2010
  • In wireless sensor networks (WSNs), both efficient energy management and Quality of Service (QoS) are important issues for some applications. For creating robust networks, real-time services are usually employed to satisfy the QoS requirements. In this paper, we proposed a hierarchical real-time MAC (medium access control) protocol for (m,k)-firm constraint in wireless sensor networks shortly called HRTS-MAC. The proposed HRTS-MAC protocol is based on a dynamic priority assignment by (m,k)-firm constraint. In a tree structure topology, the scheduling algorithm assigns uniform transmitting opportunities to each node. The paper also provides experimental results and comparison of the proposed protocol with E_DBP scheduling algorithm.

Distributed Collision-Resolvable Medium Access Control for Wireless LANs with Interference Cancellation Support

  • Shen, Hu;Lv, Shaohe;Wang, Xiaodong;Zhou, Xingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2691-2707
    • /
    • 2014
  • Medium access control is critical in wireless networks for efficient spectrum utilization. In this paper, we introduce a novel collision resolution method based on the technique of known interference cancellation, and propose a new MAC protocol named as CR-MAC, in which AP tries to decode all the collided data packets by combining partial retransmissions and known interference cancellation. As the collided transmissions are fully utilized, less retransmission is required, especially in a crowded network. The NS-2simulation and MATLAB numerical results show that, under various network settings, CR-MAC performs much better than the IEEE 802.11 DCF in terms of the aggregation throughput and the expected packet delay.

MAC Protocols for Energy Harvesting Wireless Sensor Networks: Survey

  • Kosunalp, Selahattin
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.804-812
    • /
    • 2015
  • Energy harvesting (EH) technology in the field of wireless sensor networks (WSNs) is gaining increasing popularity through removing the burden of having to replace/recharge depleted energy sources by energy harvester devices. EH provides an alternative source of energy from the surrounding environment; therefore, by exploiting the EH process, WSNs can achieve a perpetual lifetime. In view of this, emphasis is being placed on the design of new medium access control (MAC) protocols that aim to maximize the lifetime of WSNs by using the maximum possible amount of harvested energy instead of saving any residual energy, given that the rate of energy harvested is greater than that which is consumed. Various MAC protocols with the objective of exploiting ambient energy have been proposed for energy-harvesting WSNs (EH-WSNs). In this paper, first, the fundamental properties of EH-WSN architecture are outlined. Then, several MAC protocols proposed for EH-WSNs are presented, describing their operating principles and underlying features. To give an insight into future research directions, open research issues (key ideas) with respect to design trade-offs are discussed at the end of this paper.