• Title/Summary/Keyword: medicinal plant extracts

Search Result 659, Processing Time 0.024 seconds

Antimicrobial Effect of Medicinal Plants against Methicillin-Resistant Staphylococcus aureus (MRSA) (약용식물의 항생제 내성균주에 대한 항균활성)

  • Ji, Young-Ju;Lee, Ji-Won;Lee, In-Seon
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.412-419
    • /
    • 2007
  • In the present study, we investigated antimicrobial activity of the medicinal plants against various strains of methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus (S. aureus). Among the tested, the plants extracts of Asiasarum heterotropoides var. mandshuricum, Coptidis rhizoma, Reynoutria elliptica Migo., Solidago virga-aurea var. gigantea Miq.seed exhibited significant antimicrobial activities against MRSA KCCM 11812, 40510 and S. aureus ATCC 25923. The methanol extract of Asiasarum heterotropoides var. mandshuricum showed strong antimicrobial activity against MRSA KCCM 11812, 40510 and S. aureus ATCC 25923 at the 5 mg/disc. A synergistic effect was found in combined extracts of Asiasarum heterotropoides var. mandshuricum and Coptidis rhizoma as compared to each extracts alone. The result suggests that medicinal plant extracts can be used as an effective natural antimicrobial agent in food.

Anti-inflammatory effect of Lonicera caerulea through ATF3 and Nrf2/HO-1 Activation in LPS-stimulated RAW264.7 Cells

  • Kim, Ha Na;Park, Su Bin;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.65-65
    • /
    • 2019
  • In this study, we evaluated the anti-inflammatory effect of extracts of leaves (LCLE) and branches (LCBE) from L. caerulea in LPS-stimulated RAW264.7 cells. Inhibitory effect of LCLE and LCBE against LPS-induced overproduction of NO, iNOS and $IL-1{\beta}$ was higher than LCFE. Furthermore, LCLE and LCBE significantly inhibited the overexpression of COX-2, IL-6 and $TNF-{\alpha}$ in LPS-stimulated RAW264.7 cells. LCLE and LCBE did not inhibited LPS-induced degradation of $I{\kappa}B-{\alpha}$, but blocked the nuclear accumulation of p65. LCLE did not inhibited LPS-induced phosphorylation of ERK1/2 and p38, while LCBE significantly attenuated phosphorylation level of p38. LCLE and LCBE increased HO-1 protein level and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by HO-1 knockdown. The inhibition of p38 by SB203580 and ROS by NAC blocked HO-1 expression by LCLE and LCBE. LCLE and LCBE increased p38 phosphorylation and the inhibition of ROS by NAC blocked p38 phosphorylation LCLE and LCBE. LCLE and LCBE induced nuclear accumulation of Nrf2, but this was significantly reversed by the inhibition of p38 and ROS. In addition, LCLE and LCBE increased ATF3 expression and decrease of iNOS and $IL-1{\beta}$ expression by LCLE and LCBE was inhibited by ATF3 knockdown. Collectively, LCLE and LCBE inhibited LPS-induced $NF-{\kappa}B$ activation by blocking p65 nuclear accumulation, increased HO-1 expression by ROS/p38/Nrf2 activation, and increased ATF3 expression. Furthermore, LCBE inhibited LPS-induced p38 phosphorylation.

  • PDF

Rodgersia podophylla Leaves Suppress Inflammatory mediators through activation of Nrf2/HO-1 signaling, and inhibition of LPS-induced NF-κB and MAPKs signaling in RAW264.7 cells

  • Kim, Ha Na;Kim, Jeong Dong;Park, Su Bin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.94-94
    • /
    • 2019
  • In this study, we elucidated the anti-inflammatory mechanisms of leaves extracts from Rodgersia podophylla (RPL) in RAW264.7 cells. RP-L significantly inhibited the production of the proinflammatory mediators such as NO, iNOS, IL-$1{\beta}$ and IL-6 in LPS-stimulated RAW264.7 cells. RPL increased HO-1 expression in RAW264.7 cells, and the inhibition of HO-1 by ZnPP reduced the inhibitory effect of RPL against LPS-induced NO production in RAW264.7 cells. Inhibition of p38, ROS and $GSK3{\beta}$ attenuated RPL-mediated HO-1 expression. Inhibition of ROS inhibited p38 phosphorylation and $GSK3{\beta}$ expression induced by RPL. In addition, inhibition of $GSK3{\beta}$ blocked RPL-mediated p38 phosphorylation. RPL induced nuclear accumulation of Nrf2, and Inhibition of p38, ROS and $GSK3{\beta}$ abolished RPL-mediated nuclear accumulation of Nrf2. Furthermore, RPL blocked LPS-induced degradation of $I{\kappa}B-{\alpha}$ and nuclear accumulation of p65. RP-L also attenuated LPS-induced phosphorylation of ERK1/2 and p38. Our results suggest that RPL exerts potential antiinflammatory activity by activating ROS/$GSK3{\beta}$/p38/Nrf2/HO-1 signaling and inhibiting NF-${\kappa}B$ and MAPK signaling in RAW264.7 cells. These findings suggest that RPL may have great potential for the development of anti-inflammatory drug.

  • PDF

Vaccinium oldhamii Stems Inhibit Pro-inflammatory Response and Osteoclastogenesis through Inhibition of NF-κB and MAPK/ATF2 Signaling Activation in LPS-stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.67-67
    • /
    • 2019
  • Vaccinium oldhamii (V. oldhamii) has been reported to exert a variety of the pharmacological properties such as anti-oxidant activity, anti-cancer activity, and inhibitory activity of ${\alpha}$-amylase and acetylcholinesterase. However, the anti-inflammatory activity of V. oldhamii has not been studied. In this study, we aimed to investigate anti-inflammatory activity of the stem extracts from V. oldhamii, and to elucidate the potential mechanisms in LPS-stimulated RAW264.7 cells. Among VOS, VOL and VOF, the inhibitory effect of NO and PGE2 production induced by LPS was highest in VOS treatment. Thus, VOS was selected for the further study. VOS dose-dependently blocked LPS-induced NO and PGE2 production by inhibiting iNOS and COX-2 expression, respectively. VOS inhibited the expression of pro-inflammatory cytokines such as $IL-1{\beta}$, IL-6 and $TNF-{\alpha}$. In addition, VOS suppressed TRAP activity and attenuated the expression of the osteoclast-specific genes such as NFATc1, c-FOS, TRAP, MMP-9, cathepsin K, CA2, OSCAR and ATPv06d2. VOS inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. VOS inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, VOS inhibited ATF2 phosphorylation and blocked ATF2 nuclear accumulation. From these findings, VOS has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammatory diseases.

  • PDF

Inhibitory Activity of Edible Plant Extracts on Proliferation of Human Umbilical Vein Endothelial Cells (HUVECs)

  • Song, Myoung-Chong;Kim, Sung-Hoon;Kwak, Ho-Young;Yang, Hye-Joung;Bang, Myun-Ho;Chung, In-Sik;Lee, Youn-Hyung;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.249-253
    • /
    • 2007
  • Thirteen edible plants previously reported to show inhibitory activities on farnesyl protein transferase (FPTase) and phosphatase of the regenerating liver-3 (PRL-3) were evaluated for inhibitory activity on the proliferation of human umbilical vein endothelial cells (HUVECs). Four plant extracts, Oenothera erythrosepala, Perilla frutescens, Panicum miliaceum, and Quercus acutissima, significantly inhibited the proliferation of HUVECs induced by the basic fibroblast growth factor (bFGF) without cytotoxicity at 100 ${\mu}g/mL$. Myristica fragrans, Rosmarinus officinalis, and Syringa patula also showed inhibitory activity on the proliferation with only mild cytotoxicity.

Siphonochilus aethiopicus, a traditional remedy for the treatment of allergic asthma

  • Fouche, Gerda;van Rooyen, Schalk;Faleschini, Teresa
    • CELLMED
    • /
    • v.3 no.1
    • /
    • pp.6.1-6.6
    • /
    • 2013
  • Asthma is a chronic inflammatory disease of the lungs, characterized by increased sensitivity to bronchoconstriction associated with infiltration of immune cells and mucus hyper secretion. In South Africa, the indigenous plant Siphonochilus aethiopicus, is used by traditional health practitioners to treat colds and flu, wheezing of the chest, coughs, influenza, sinus problems and mild asthma. In this study we aimed to investigate the potential anti-inflammatory and immune-modulating properties of S. aethiopicus in vitro. The dried and powdered S. aethiopicus plant material was extracted with organic solvents. The dried extracts were screened in vitro in the transcription response, NF-${\kappa}B$ and a cytokine assay. Significant activity was observed for organic extracts of the plant in these assays. This study provides evidence that S. aethiopicus has anti-inflammatory and immune-suppressing properties in vitro. These findings may support anecdotal accounts of its effectiveness against allergic asthma.

A Study on Extraction Conditions of Paeonia lactiflora for High Immunostimulatory Activity

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.42-42
    • /
    • 2023
  • Paeonia lactiflora roots (PLR) are a traditional medicinal plant used to treat inflammatory diseases. Recently, PLR has been reported to increase the secretion of immune regulatory factors and enhance phagocytic activity in macrophages. Therefore, in this study, we compared the macrophage activation induced by PLR under different extraction conditions. PLR extracts at temperatures ranging from 4℃ to 60℃ increased the secretion of immune regulatory factors, but the secretion slightly decreased at 80℃. Under time-based extraction conditions at 60℃, immune regulatory factor secretion by PLR extracts was similar from 1 to 24 hours. Therefore, considering the overall results of this study, extracting PLR at 60℃ for 1 hour is considered the optimal condition for macrophage activation.

  • PDF

Effects of Some Medicinal Plants for Liver Enzyme Activities (수종(數種) 생약(生藥)이 간(肝) 효소활성(酵素活性)에 미치는 영향(影響))

  • Kim, Tae-Hee;Yang, Ki-Sook;Chang, Eun-Sook;Baik, Sung-Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.15 no.1
    • /
    • pp.1-5
    • /
    • 1984
  • The methanol extracts of five medicinal plant materials selected were tested for antihepatotoxic activity. Protective effects on the liver defect caused by $CCl_4$ can be proved by liver enzyme activities of serum GOT, GPT, LDH and ALP. The curative effects of these materials against $CCl_4-induced$ liver damage in albino rats were compared with those of control groups. It was shown that the extracts of Hepatica asiatica and Stellaria media showed antihepatotoxic effect on $CCl_4-induced$ liver damage; however, the extract of Gleditschia officinalis had no effect.

  • PDF

Inhibitory effects of the medicinal plant extract on tyrosinase and elastase. and free radical scavenging effects

  • Kim, Ik-Soo;Kim, Mi-Jung;Lee, Bock-Soon;Na, Hun-U;Jeon, Jong-Taek;Lee, Hee-Bong
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.392.1-392.1
    • /
    • 2002
  • One of the important functions of skin is protection from harmful environments. There has been many studies for keeping skin healthy from wrinkling and pigmenting. Skin wrinkle and pigmentation could be caused by the disruption of connective tissue, free radicals and ultraviolet irradiation. In this study, the extracts obtained from 25 kinds of medicinal plants were screened. All the extracts examined were obtained by using 70% (v/v) ethanol at $60^{\circ}C$. (omitted)

  • PDF

Antimicrobial Activity of Medicinal Plants Against Bacillus subtilis Spore

  • Cho, Won-Il;Choi, Jun-Bong;Lee, Kang-Pyo;Cho, Seok-Cheol;Park, Eun-Ji;Chung, Myong-Soo;Pyun, Yu-Ryang
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.1072-1077
    • /
    • 2007
  • Bacterial endospores, especially those of Bacillus and Clostridium genera, are the target of sterilization in various foods. We used Bacillus subtilis ATCC 6633 spores to screen novel antimicrobial substances against spores from medicinal plants. We collected 79 types of plant samples, comprising 42 types of herbs and spices and 37 types of medicinal plants used in traditional medicine in Korea and China. At a concentration of 1%(w/v), only 14 of the ethanol extracts exhibited antimicrobial activity against B. subtilis spores of at least 90%. Crude extracts of Torilis japonica, Gardenia jasminoides, Plantago asiatica, Fritllaria, and Arctium lappa showed particularly high sporicidal activities, reducing the spore count by about 99%. Consideration of several factors, including antimicrobial activity, extraction yields, and costs of raw materials, resulted in the selection of T. japonica, G. jasminoides, A. lappa, and Coriandrum sativum for the final screening of novel antimicrobial substances. Verification tests repeated 10 times over a 4-month period showed that the ethanol extract of T. japonica fruit reduced aerobic plate counts of B. subtilis spores the most, from $10^7$ to $10^4\;CFU/mL$ (99.9%) and with a standard deviation of 0.21%, indicating that this fruit is the most suitable for developing a novel antimicrobial substance for inactivating B. subtilis spores.