• Title/Summary/Keyword: medical images

Search Result 2,805, Processing Time 0.045 seconds

Brain MRI Findings of Nitrogen Gas Inhalation for Suicide Attempt: a Case Report

  • Kim, Young-eun;Lee, Donghoon;Kim, Minji;Hwang, Hokyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.21 no.4
    • /
    • pp.264-268
    • /
    • 2017
  • South Korea has the highest reported suicide rate among all countries belonging to the Organization for Economic Cooperation and Development. Nitrogen is a colorless, odorless and nontoxic gas. Nitrogen gas has, however, been recently used as a method of attempted suicide, its nontoxity notwithstanding. We herein report on an unusual case involving a 30-year-old male who presented with symptoms after a suicide attempt by nitrogen inhalation. Diffusion-weighted imaging of his brain was showed curvilinear high signal intensity in the bilateral frontal and right occipital cortices, with subtle low apparent diffusion coefficient value. In addition, T2-weighted images and fluid attenuated inversion recovery images revealed subtle high signal intensity in the bilateral frontal cortices, basal ganglia and occipital cortices with contrast enhancement.

CCD-based EPID and Frame Averaging Technique

  • Kim, Ho-Kyung;Cho, Gyu-Seong;Chung, Yong-Hyun;Ahn, Seong-Kyu;Lee, Hyung-Koo;Kim, Hoi-Nam;Yoon, Sei-Chul
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.297-298
    • /
    • 1998
  • Prototype portal imaging device (EPID) based on CCD camera, which has a $20\times20cm^2$ field of view (FOV), has been developed and then tested by acquiring phantom images for 6 MV x-ray beam. While, among the captured images, each frame suffered notorious quantum noise, the frame averaging largely enhanced the image quality against quantum noise. Over 60 frames averaging, the signal-to-noise ratio (SNR) was increased by $\sim20$ times and contrast was increased about 2 times in the skull-region of the acquired head-phantom image.

  • PDF

A Study on Volume Visualization Method of Three-Dimensional Ultrasonic Medical Image (삼차원 초음파 의료 영상의 입체 묘사 기법 연구)

  • Choi, J.P.;Ha, M.H.;Ra, J.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.45-48
    • /
    • 1995
  • Visualization of three dimensional medical images has been studied in many ways. For CT and MRI data, 3D rendering schemes are commercially available and widly used. However visualization of ultrasonic 3D data is not popular yet, even though its potentional in medical diagnosis seems very high. In this paper we try to visualize 3D ultrasonic data. The basic method is adopted from the volume rendering technique. Based on the characteristics of the ultrasonic images, 3D visualization algorithm is developed and applied for the 3D image set of a dog heart.

  • PDF

Intra-Suprasellar Schwannoma Originating from the Diaphragma Sellae

  • Park, Hyun-Woong;Jung, Shin;Jung, Tae-Young;Moon, Kyung-Sub
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.6
    • /
    • pp.375-377
    • /
    • 2009
  • A 49-year-old woman presented with headache, vomiting and visual disturbance. Neurological examination revealed bitemporal hemianopsia with poor visual acuity. Magnetic resonance imaging showed a bulky intra-suprasellar mass, which was isointense with brain parenchyma on T1-weighted images, and slightly hyperintense on T2-weighted images. After gadolinium administration, the mass was homogeneously enhanced. The mass was partially removed by the endonasal transsphenoidal approach and then the remnant mass was totally removed by the transcranial approach five months later. We found a yellowish mass which was attached to the diaphragm sellae in operation field. Histopathological examination of the tumor revealed the characteristic features of a schwannoma. We report an unusual case of an intra-suprasellar schwannoma resembling a non-functioning pituitary macroadenoma both clinically and radiologically.

Requirements for Future Digital Radiology System

  • Kim, Y.M.;Park, H.W.;Haynor, D.R.
    • Progress in Medical Physics
    • /
    • v.2 no.1
    • /
    • pp.3-16
    • /
    • 1991
  • Abstract. An area of particularly rapid technological growth in the last 15 years has been medical imaging (conventional X-ray, ultrasound, X-ray computed tomography (CT), magnetic resonance imaging (MRI). As the number and complexity of imaging studies rises, it becomes ever more important to distribute these images and the associated diagnoses in a timely and cost-effective fashion. The purpose of this paper is to describe the requirements for a future digital radiology system which will efficiently handle the large volume of images that generated, add new functionality to improve productivity of physicians, technologists, and other health care providers, and provide enough flexibility to allow the system to grow as medical image technology grows.

  • PDF

Medical image control process improvement based on Cardiac PACS (Cardiac PACS 구축에 따른 의료영상 관리 프로세스 개선)

  • Jung, Young-Tae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Heart related special images are classified as Cardiac US, XA, CT, MRI. Several Problem is caused by image compression, control and medical support point, so most big hospitals have created a Cadiac PACS differentially in past years. For this reason, create a conflict in inner colleague and patient, protector that result from 2 data processing server operating independently in 1 medical center area. For this reason, we sugges an alternative model of best medical control process together with understand the current situation on medical facility.

  • PDF

System Implementation for Mobile-Based Diagnostic Medical Image Service (모바일 진단의료영상 서비스를 위한 시스템 구현)

  • Kim, Yong-Soo;Jeon, Joonhyeon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.11
    • /
    • pp.870-878
    • /
    • 2013
  • The objective of this paper is to develop mobile-based PACS(Picture Archiving Communication System: mPACS) for diagnostic medical image service available via Android-based mobile smartphone. The proposed mPACS provides an integrated platform for mobile application of diagnostic medical images stored in hospital PACS, and allows the smartphone to store, retrieve, manipulate and transfer the diagnostic medical images. Then, the mPACS platform includes the following features for use in the Android framework (i. e., diagnostic medical image processing) : transfer protocols between PACS, mPACS and smartphone, image format converter, JPEG and JPEG2000 coders, text and avatar search, and etc. This mPACS is shown to be useful and effective in providing a solution for mobile-based diagnostic medical image service.

Evaluation of Morphological Changes in Degenerative Cartilage Using 3-D Optical Coherence Tomography

  • Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.98-102
    • /
    • 2008
  • Optical Coherence Tomography (OCT) is an important noninvasive medical imaging technique that can reveal subsurface structures of biological tissue. OCT has demonstrated a good correlation with histology in sufficient resolution to identify morphological changes in articular cartilage to differentiate normal through progressive stages of degenerative joint disease. Current OCT systems provide individual cross-sectional images that are representative of the tissue directly under the scanning beam, but they may not fully demonstrate the degree of degeneration occurring within a region of a joint surface. For a full understanding of the nature and degree of cartilage degeneration within a joint, multiple OCT images must be obtained and an overall assessment of the joint surmised from multiple individual images. This study presents frequency domain three-dimensional (3-D) OCT imaging of degenerative joint cartilage extracted from bovine knees. The 3-D OCT imaging of articular cartilage enables the assembly of 126 individual, adjacent, rapid scanned OCT images into a full 3-D image representation of the tissue scanned, or these may be viewed in a progression of successive individual two-dimensional (2-D) OCT images arranged in 3-D orientation. A fiber-based frequency domain OCT system that provides cross-sectional images was used to acquire 126 successive adjacent images for a sample volume of $6{\times}3.2{\times}2.5\;mm^3$. The axial resolution was $8\;{\mu}m$ in air. The 3-D OCT was able to demonstrate surface topography and subsurface disruption of articular cartilage consistent with the gross image as well as with histological cross-sections of the specimen. The 3-D OCT volumetric imaging of articular cartilage provides an enhanced appreciation and better understanding of regional degenerative joint disease than may be realized by individual 2-D OCT sectional images.