• Title/Summary/Keyword: medical images

Search Result 2,759, Processing Time 0.032 seconds

Representation Techniques for 4-Dimensional MR Images

  • Homma, Kazuhiro;Takenaka, Kenji;Nakai, Yoshihiko;Hirose, Takeshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.429-431
    • /
    • 2002
  • Metabolic analysis of biological tissues, the interventional radiology in MRT (Magnetic Resonance Treatment) and for clinical diagnoses, representation of 4-Dimensional (4D) structural information (x,y,z,t) of biological tissues is required. This paper discusses image representation techniques for those 4D MR Images. We have proposed an image reconstruction method for ultra-fast 3D MRI. It is based on image interpolation and prediction of un-acquired pictorial data in both of the real and the k-space (the acquisition domain in MRI). A 4D MR image is reconstructed from only two 3D MR images and acquired a few echo signals that are optimized by prediction of the tissue motion. This prediction can be done by the phase of acquired echo signal is proportioned to the tissue motion. On the other hand, reconstructed 4D MR images are represented as a 3D-movie by using computer graphics techniques. Rendered tissue surfaces and/or ROIs are displayed on a CRT monitor. It is represented in an arbitrary plane and/or rendered surface with their motion. As examples of the proposed representation techniques, the finger and the lung motion of healthy volunteers are demonstrated.

  • PDF

A Design and Implementation of Volume Rendering Program based on 3D Sampling (3차원 샘플링에 기만을 둔 볼륨랜더링 프로그램의 설계 및 구현)

  • 박재영;이병일;최흥국
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.494-504
    • /
    • 2002
  • Volume rendering is a method of displaying volumetric data as a sequence two-dimensional image. Because this algorithm has an advantage of visualizing structures within objects, it has recently been used to analyze medical images i.e, MRI, PET, and SPECT. In this paper. we suggested a method for creating images easily from sampled volumetric data and applied the interpolation method to medical images. Additionally, we implemented and applied two kinds of interpolation methods to improve the image quality, linear interpolation and cubic interpolation at the sampling stage. Subsequently, we compared the results of volume rendered data using a transfer function. We anticipate a significant contribution to diagnosis through image reconstruction using a volumetric data set, because volume rendering techniques of medical images are the result of 3-dimensional data.

  • PDF

Development of a truncation artifact reduction method in stationary inverse-geometry X-ray laminography for non-destructive testing

  • Kim, Burnyoung;Yim, Dobin;Lee, Seungwan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1626-1633
    • /
    • 2021
  • In an industrial field, non-destructive testing (NDT) is commonly used to inspect industrial products. Among NDT methods using radiation sources, X-ray laminography has several advantages, such as high depth resolution and low computational costs. Moreover, an X-ray laminography system with stationary source array and compact detector is able to reduce mechanical motion artifacts and improve inspection efficiency. However, this system, called stationary inverse-geometry X-ray laminography (s-IGXL), causes truncation artifacts in reconstructed images due to limited fields-of-view (FOVs). In this study, we proposed a projection data correction (PDC) method to reduce the truncation artifacts arisen in s-IGXL images, and the performance of the proposed method was evaluated with the different number of focal spots in terms of quantitative accuracy. Comparing with conventional techniques, the PDC method showed superior performance in reducing truncation artifacts and improved the quantitative accuracy of s-IGXL images for all the number of focal spots. In conclusion, the PDC method can improve the accuracy of s-IGXL images and allow precise NDT measurements.

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.

Ethmoidal Meningoencephalocele Associated with Seizure in a Juvenile Alaskan Malamute

  • Park, Sun-young;Lee, Young-jae;Song, Jin-young;Jeon, Seok-ho;Jeong, Ji-yoon;Kang, Byeong-taek;Kang, Ji-hoon;Chang, Jin-hwa;Chang, Dong-woo
    • Journal of Veterinary Clinics
    • /
    • v.33 no.3
    • /
    • pp.168-171
    • /
    • 2016
  • Signalment: An 8-month-old female Alaskan malamute was presented for progressive cluster seizure disorder. Results: There were no abnormalities on neurological examination, survey radiographs, or blood analysis. Magnetic resonance (MR) imaging and computed tomography revealed extension of the olfactory bulb and frontal lobe into the nasal cavity. They also confirmed abnormal anatomy of the nasal turbinates within the rostral part of the nasal cavity and the absence of a cribriform plate. On T2-weighted and fluid-attenuated inversion recovery images, the herniated brain showed heterogeneous and hyperintense signals consistent with intraparenchymal edema. Transverse MR images showed brain herniation into the right frontal cavity and an asymmetrical lateral ventricle because of a left midline shift. On contrast-enhanced MR images, the protruding brain parenchyma was mildly enhanced. Ethmoidal encephalocele was suspected as the final diagnosis. Despite symptomatic treatment, the dog continued to exhibit seizures and was euthanized. Clinical relevance: Ethmoidal encephalocele is a rare disease in dogs. However, it could be considered as a cause of seizure in young dogs.

Quantitative Measurements of 3-D Imaging with Computed Tomography using Human Skull Phantom

  • Kim, Dong-Wook;Kim, Hee-Joung;Haijo Jung;Soonil Hong;Yoo, Young-Il;Kim, Dong-Hyeon;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.506-508
    • /
    • 2002
  • As an advancement of medical imaging modalities and analyzing software with multi-function, active researches to acquire high contrast and high resolution image being done. In recently, development of medical imaging modalities like as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) is aiming to display anatomical structure more accuracy and faster. Thus, one of the important areas in CT today is the use of CT scanner for the quantitative evaluation of 3-D reconstruction images from 2-D tomographic images. In CT system, the effective slice thickness and the quality of 3-D reconstructed image will be influenced by imaging acquisition parameters (e.g. pitch and scan mode). In diagnosis and surgical planning, the accurate distance measurements of 3-D anatomical structures play an important role and the accuracy of distance measurements will depend on the acquisition parameters such as slice thickness, pitch, and scan mode. The skull phantom was scanned with SDCT for various acquisition parameters and acquisition slice thicknesses were 3 and 5 mm, and reconstruction intervals were 1, 2, and 3 mm to each pitch. 3-D visualizations and distance measurements were performed with PC based 3-D rendering and analyzing software. Results showed that the image quality and the measurement accuracy of 3-D SDCT images are independent to the reconstruction intervals and pitches.

  • PDF

Design and Implementation of CDA Based PACS for Optimized Metadata Extraction (최적화된 메타데이터 추출물 위한 CDA 기반의 의료영상전달시스템 설계 및 구현)

  • Kim Sun-Chil;Cho Hune;Kwak Yun-Sik;Kim Il-Kon;Kim Hwa-Sun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.315-323
    • /
    • 2005
  • The recent development of embodiment technology of the medical images makes most medical institutions introduce PACS in haste. However, while many older HIS and PACS systems are not yet capable of some of the integration, several new systems are moving rapidly in that direction. Typical PACS system architecture begins with the HIS since this is where the correct patient demographic information and in many cases the orders originate. So, PACS developed convenience of users and to satisfy user's demand because of financial limitations and administrator-oriented considerations in the process of development. Therefore, we have developed a CDA (Clinical Document Architecture) based PACS with HIS, by which we can search and refer to the patient's medical images and information with few restrictions of time and space for diagnosis and treatment. Target model of this research limited to 135 of hospital have 200 beds. We'll make more effort to develop the application which insures the better quality and information of medical images. Medical Image History manages the patient's image files and various medical informations like film chart in connection with time. This trial will contribute to the reduction of the financial loss caused by unnecessary devices and improve the quality in the medical services. The demand on the development of the program which refers to the medical data quickly and keeps them stable will be continued by the medical institute. This will satisfy the client's demand and improve the service to the patients in that the program will be modified from the standpoint of the users.

3D Visualization of Medical Image Registration using VTK (VTK를 이용한 의료영상정합의 3차원 시각화)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.553-560
    • /
    • 2008
  • The amount of image data used in medical institution is increasing rapidly with great development of medical technology. Therefore, an automation method that use image processing description, rather than manual macrography of doctors, is required for the analysis large medical data. Specially, medical image registration, which is the process of finding the spatial transform that maps points from one image to the corresponding points in another image, and 3D analysis and visualization skills for a series of 2D images are essential technologies. However, a high establishment cost raise a budget problem, and hence small scaled hospitals hesitate importing these medical visualizing system. In this paper, we propose a visualization system which allows user to manage datasets and manipulates medical images registration using an open source graphics tool - VTK(Visualization Tool Kit). The propose of our research is to get more accurate 3D diagnosis system in less expensive price, compared to existing systems.

4K Media based Cooperative Medical Group Model on Logical Group Network (4K 미디어중심 협업의료 논리그룹망 모델 연구)

  • Noh, Min-Ki;Park, Byeong-Yeon;Kim, Dong-Gyun;Lee, Won-Hyuk;Gil, Joon-Min
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2015
  • The quality of medical treatment can be promoted by transmitting high-definition medical images and sharing these images. The high speed transmission network is a requirement for the ultra high-definition media. A high quality medical research and education can be provided by connecting resources and media-data through the superhigh speed research network. Network bandwidth for 4K media transmission generated with Lambda network technology.

Three-Dimensional Medical Visualization Method on PC (PC기반의 3차원 의학영상 가시화 방법에 관한 연구)

  • Lee, J.H.;Lee, S.H.;Lee, T.S.;Choi, I.T.;Park, S.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.259-260
    • /
    • 1998
  • In this paper, we present a 3D visualization method of medical image on PC. Using morphological method, we used to segment 2D medical images (X-ray CT, MRI). Presented method is treating in some detail two operations : dilation and erosion. Also known as an isosurface, using a constant density surface make a target organ in 3D. In the whole procedure for visualization. The medical images are implemented by using Visual C++ 5.0 in activeX and IDL(interactive data language) under PC environment.

  • PDF