• 제목/요약/키워드: media recommendation

검색결과 218건 처리시간 0.024초

이미지와 텍스트 정보의 카테고리 분류에 의한 SNS 팔로잉 추천 방법 (Recommendation Method of SNS Following to Category Classification of Image and Text Information)

  • 홍택은;신주현
    • 스마트미디어저널
    • /
    • 제5권3호
    • /
    • pp.54-61
    • /
    • 2016
  • 다양한 스마트 디바이스의 발전에 따라 거리, 공간의 제약 없이 실시간으로 의사소통, 정보공유 등이 가능한 SNS(Social Network Service)를 즐기는 사용자(User)가 증가하고 있다. 의사소통, 관계 형성에 중점을 두었던 SNS 사용자들이 정보공유의 기능으로 SNS를 활용하는 추세이다. 본 논문에서는 사용자의 SNS 게시글을 이용하여 카테고리를 추출하고 정보제공자(Information provider)를 팔로잉 추천해주는 방법을 기술한다. 게시글의 텍스트에서 단어를 분류하고 빈도수를 측정하며, 머신 러닝 기법 중 하나인 CNN(Convolutional Neural Network)을 바탕으로 구축한 Inception-v3 모델을 이용하여 이미지를 단어로 분류한다. 텍스트와 이미지에서 분류한 단어를 DMOZ 기준으로 카테고리 분류하여 정보제공자 DB를 구축한다. 정보제공자 DB의 카테고리와 게시글에서 분류한 사용자의 카테고리를 비교한다. 카테고리가 일치할 경우 카테고리에 분류되어 있는 정보 제공자들를 대상으로 유사도를 측정하여 가장 비슷한 정보제공자의 계정을 추천해주는 방법에 대해 제안한다.

Big Data Analysis on the Perception of Home Training According to the Implementation of COVID-19 Social Distancing

  • Hyun-Chang Keum;Kyung-Won Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권3호
    • /
    • pp.211-218
    • /
    • 2023
  • Due to the implementation of COVID-19 distancing, interest and users in 'home training' are rapidly increasing. Therefore, the purpose of this study is to identify the perception of 'home training' through big data analysis on social media channels and provide basic data to related business sector. Social media channels collected big data from various news and social content provided on Naver and Google sites. Data for three years from March 22, 2020 were collected based on the time when COVID-19 distancing was implemented in Korea. The collected data included 4,000 Naver blogs, 2,673 news, 4,000 cafes, 3,989 knowledge IN, and 953 Google channel news. These data analyzed TF and TF-IDF through text mining, and through this, semantic network analysis was conducted on 70 keywords, big data analysis programs such as Textom and Ucinet were used for social big data analysis, and NetDraw was used for visualization. As a result of text mining analysis, 'home training' was found the most frequently in relation to TF with 4,045 times. The next order is 'exercise', 'Homt', 'house', 'apparatus', 'recommendation', and 'diet'. Regarding TF-IDF, the main keywords are 'exercise', 'apparatus', 'home', 'house', 'diet', 'recommendation', and 'mat'. Based on these results, 70 keywords with high frequency were extracted, and then semantic indicators and centrality analysis were conducted. Finally, through CONCOR analysis, it was clustered into 'purchase cluster', 'equipment cluster', 'diet cluster', and 'execute method cluster'. For the results of these four clusters, basic data on the 'home training' business sector were presented based on consumers' main perception of 'home training' and analysis of the meaning network.

디지털 농업을 위한 딥러닝 기반의 환경 인자 추천 기술 연구 (A Study on Environmental Factor Recommendation Technology based on Deep Learning for Digital Agriculture)

  • 조한진
    • 스마트미디어저널
    • /
    • 제12권5호
    • /
    • pp.65-72
    • /
    • 2023
  • 스마트팜은 농업과 ICT의 융복합을 통해 농업의 생산뿐만 아니라 유통과 소비를 포함한 농업과 관련된 다양한 분야로 새로운 가치를 창출하는 것을 의미한다. 국내에서도 스마트 농업 확산을 위한 임대형 스마트팜을 조성하고, 스마트팜 빅데이터 플랫폼을 구축하여 데이터 수집·활용 촉진. 스마트 APC 확대, 온라인거래소 운영 및 도매시장 거래정보 디지털화 등 산지에서 소비지까지 농산물 유통 디지털 전환을 추진하고 있다. 이처럼 농업 데이터는 다양한 출처에서 특성에 따라 정보가 생성되고 있지만, 통계 및 정형화된 데이터를 이용한 서비스로만 활용되고 있다. 이는 농업에서 생산·유통·소비까지 분산된 데이터 수집으로 인해 한계가 있으며 다양한 출처로부터의 다양한 형태의 데이터를 수집·처리하기 어렵기 때문이다. 그러므로 본 논문에서는 디지털 농업을 위한 국내 농업 데이터 수집·공유 현황을 분석하고 인공지능 서비스를 위한 데이터 수집·연계 방법을 제안한다. 그리고 제안하는 데이터를 이용하여 딥러닝 기반의 환경 인자를 추천하는 방법을 제안한다.

익스플리싯 피드백 환경에서 추천 시스템을 위한 최신 지식증류기법들에 대한 성능 및 정확도 평가 (State-of-the-Art Knowledge Distillation for Recommender Systems in Explicit Feedback Settings: Methods and Evaluation)

  • 배홍균;김지연;김상욱
    • 스마트미디어저널
    • /
    • 제12권9호
    • /
    • pp.89-94
    • /
    • 2023
  • 추천 시스템은 사용자가 아이템에 남긴 익스플리싯 또는 임플리싯 피드백을 바탕으로 각 사용자가 선호할 법한 아이템들을 추천하는 기술이다. 최근, 추천 시스템에 사용되는 딥 러닝 기반 모델의 사이즈가 커짐에 따라, 높은 추천 정확도를 유지하며 추론 시간은 줄이기 위한 목적의 연구가 활발히 진행되고 있다. 대표적으로 지식증류기법을 이용한 추천 시스템에 관한 연구가 있으며, 지식증류기법이란 큰 사이즈의 모델(즉, 교사)로부터 추출된 지식을 통해 작은 사이즈의 모델(즉, 학생)을 학습시킨 뒤, 학습이 끝난 작은 사이즈의 모델을 추천 모델로서 이용하는 방법이다. 추천 시스템을 위한 지식증류기법들에 관한 기존의 연구들은 주로 임플리싯 피드백 환경만을 대상으로 수행되어 왔었으며, 본 논문에서 우리는 이들을 익스플리싯 피드백 환경에 적용할 경우의 성능 및 정확도를 관찰하고자 한다. 실험을 위해 우리는 총 5개의 최신 지식증류기법들과 3개의 실세계 데이터셋을 사용하였다.

Inter-category Map: Building Cognition Network of General Customers through Big Data Mining

  • Song, Gil-Young;Cheon, Youngjoon;Lee, Kihwang;Park, Kyung Min;Rim, Hae-Chang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권2호
    • /
    • pp.583-600
    • /
    • 2014
  • Social media is considered a valuable platform for gathering and analyzing the collective and subconscious opinions of people in Internet and mobile environments, where they express, explicitly and implicitly, their daily preferences for brands and products. Extracting and tracking the various attitudes and concerns that people express through social media could enable us to categorize brands and decipher individuals' cognitive decision-making structure in their choice of brands. We investigate the cognitive network structure of consumers by building an inter-category map through the mining of big data. In so doing, we create an improved online recommendation model. Building on economic sociology theory, we suggest a framework for revealing collective preference by analyzing the patterns of brand names that users frequently mention in the online public sphere. We expect that our study will be useful for those conducting theoretical research on digital marketing strategies and doing practical work on branding strategies.

Netflix in Indonesia: Influential Factors on Customer Engagement among Millennials' Subscribers

  • AUDITYA, Annisa;HIDAYAT, Z.
    • 유통과학연구
    • /
    • 제19권1호
    • /
    • pp.89-103
    • /
    • 2021
  • Purpose: This study is to explore how Netflix Customers' Engagement was influenced by Instagram Content, Perceived Price, Exclusivity, and Motivation in the context of Media Streaming and the role of Willingness to Subscribe as the mediating variable. This study underlines millennial's willingness to engage and the form of engagement. Research design, data, and methodology: The data for this research were collected from 100 Netflix's Millennials subscribers who follow @netflixid Instagram. All the results were analyzed and verified using SEM-PLS. Results: Research findings indicated that Willingness to Subscribe, Exclusivity, Motivation, and Instagram Content positively influenced Customer Engagement among Netflix millennials' subscribers. In contrast, Perceived Price had a negative effect on Customer Engagement. Conclusions: As a consequence, the exclusivity that Netflix offers to its audience by a recommendation algorithm has been proven to increase the engagement. This study also disclosed that the most definite form of positive engagement shown by Netflix millennials' subscribers is a behavioral aspect, where they positively recommend Netflix (word of mouth). The study findings can be a reference for the media streaming industry in their efforts to strengthen the engagement with their customers, especially the millennials, and provide knowledge about consumer behavior in digital technology.

사용자 취향, 감성 및 상황인지 기반 음원 추천 서비스 구현 (A Design of real sound recommendation service based-on User's preference, emotion and circumstance)

  • 정종진;임태범;이석필
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.689-691
    • /
    • 2011
  • Due to the rapid development of Information and communication, the technology of multimedia presentation technology is evolving into the service that user can actively, realistically enjoy and play based on user's preference and taste not only for User's passive service. Especially, the industry related the realistic multimedia service that supports targeting Human emotion with the property of Human hearing is expected to be formed of the high value-added premium market. Audio technology is affected on human's emotion and the viewing environment around than video technology. Also the audio technology compared to video technology is a research part that appeals to human emotion and emphasize on psychological aspects. With this viewpoint, the development of intelligent and realistic audio technology needs highly specialty. In this study, "intelligent real-sound presentation technology" that support high quality and realistic audio and the "core technologies" that are composing of this will be introduced.

키워드의 유사도와 가중치를 적용한 연관 문서 추천 방법 (Method of Related Document Recommendation with Similarity and Weight of Keyword)

  • 임명진;김재현;신주현
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1313-1323
    • /
    • 2019
  • With the development of the Internet and the increase of smart phones, various services considering user convenience are increasing, so that users can check news in real time anytime and anywhere. However, online news is categorized by media and category, and it provides only a few related search terms, making it difficult to find related news related to keywords. In order to solve this problem, we propose a method to recommend related documents more accurately by applying Doc2Vec similarity to the specific keywords of news articles and weighting the title and contents of news articles. We collect news articles from Naver politics category by web crawling in Java environment, preprocess them, extract topics using LDA modeling, and find similarities using Doc2Vec. To supplement Doc2Vec, we apply TF-IDF to obtain TC(Title Contents) weights for the title and contents of news articles. Then we combine Doc2Vec similarity and TC weight to generate TC weight-similarity and evaluate the similarity between words using PMI technique to confirm the keyword association.

협업 필터링 Latent Topic기반 Automatic TV Recommendation (Automatic TV Recommendation based on collaborative filtered Latent Topic)

  • 김은희;표신지;김문철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2011년도 추계학술대회
    • /
    • pp.62-65
    • /
    • 2011
  • 최근 화두가 되고 있는 스마트 폰 앱의 관심으로 스마트 TV의 앱에 대한 관심도 함께 증가하고 있다. TV시청 이용자들의 편의를 위해 증가하고 있는 수많은 채널과 콘텐츠 중, 개인 사용자의 이용 습관 및 대중의 선호 프로그램을 고려하여, 편리하게 원하는 TV프로그램에 접근하도록 해 주는 TV 앱이 있다면 이는 매우 중요한 기능으로 자리 잡을 가능성이 높을 것으로 예상된다. 이에 본 논문은 사용자의 시청 이용행태를 기반으로 주제모델링 기술의 고전적 모델인 LDA을 기반으로 협업필터링을 결합한 TV 선호 프로그램 추천 알고리듬을 제안한다. 개인의 관심 선호도는 일반적으로 특정 개수로 한정지어지는 특성을 고려하여, 개인 선호도 특성이 구별 되도록 두 가지 방법을 적용하였다. 하나는 개인 선호도 프로파일의 특정 상위 주제만을 고려하는 것이고, 또 다른 하나는 개인별 주제에 대한 선호도의 다양성이 드러나도록 비대칭 하이퍼-파라미터를 갖는 LDA를 사용 하였다. 실험 결과, 두 가지 방식에 대해 사용자의 실제 TV시청 이용내역 데이터를 기반으로 추천 성능의 향상을 평균 Precision 값을 측정하여 확인하였다. 또한, 본 논문에서는 주제 모델링을 통해 학습된 각 주제의 상위 확률의 TV 프로그램들을 분석한 결과, 하나의 주제가 개인별 시청의 특성 보다는 가족단위의 시청 특성을 드러냄을 확인할 수 있었다.

  • PDF

A Study on Influencer Food-Content Sentiment Keyword Analysis using Semantic Network based on Social Network

  • Ryu, Gi-Hwan;Yu, Chaelin;Lee, Jun Young;Moon, Seok-Jae
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.95-101
    • /
    • 2022
  • The development of the 4th industry has increased social media, and the rise of COVID-19 has stimulated non-face-to-face services. People's consumption patterns are also changing a lot due to non-face-to-face services. In this paper, food content keywords are derived through social network-based semantic network analysis, emotions are analyzed, and keywords applied to food recommendation platforms are input. We collected food, influencer, and corona keyword analysis data through Textom. A lot of research has been done through online reviews of existing influencer content. However, there is a lack of research on keyword sentiment analysis provided by influencers rather than consumers and research perspectives. This paper uploads language and topics derived through online reviews of existing publications and subscribers, and goes beyond the limits used in marketing methods. By analyzing keywords that influencers suggest when uploading content, you can apply data that applies them to food recommendation platforms and applications.