• Title/Summary/Keyword: media depth

Search Result 1,018, Processing Time 0.023 seconds

Enhancing the Reliability of OTT Viewing Data in the Golden Age of Streaming: A Small Sample AHP Analysis and In-Depth Interview

  • Seung-Chul Yoo;Yoontaek Sung;Hye-Min Byeon;Yoonmo Sang;Diana Piscarac
    • International journal of advanced smart convergence
    • /
    • v.12 no.1
    • /
    • pp.140-148
    • /
    • 2023
  • With the OTT media market growing rapidly, the significance of trustworthy data verification and certification cannot be emphasized enough. This study delves into the crucial need for such measures in South Korea, exploring the steps involved, the technological and policy-related considerations, and the challenges that may arise once these measures are put into place. Drawing on in-depth interviews and the analytical hierarchy process (AHP), this study surveyed various stakeholder groups, both directly and indirectly related to OTT data authentication and certification. By assessing the severity of OTT data-related issues and identifying the requirements for reliability-improvement policies, participants shared their valuable insights and opinions on this pressing matter. The survey results clearly indicate a divided opinion among stakeholders and industry experts on the reliability of OTT data, with some expressing trust while others remain skeptical. However, there was a consensus that advertising-based AVOD is more reliable than SVOD. By analyzing the priorities of authentication and verification, this study paves the way for the establishment and operation of a Korean MRC (KMRC), centered on the OTT media industry. The KMRC will serve as a vital platform for ensuring the authenticity and accuracy of OTT data in South Korea, providing businesses and industry players with a reliable source of information for informed decision-making. This study highlights the pressing need for reliable data authentication and certification in the rapidly growing OTT media market, and provides a persuasive case for the establishment of a KMRC in South Korea to meet this critical need.

Study on the Methods of Enhancing the Quality of DIBR-based Multiview Intermediate Images using Depth Expansion and Mesh Construction (깊이 정보 확장과 메쉬 구성을 이용한 DIBR 기반 다시점 중간 영상 화질 향상 방법에 관한 연구)

  • Park, Kyoung Shin;Kim, Jiseong;Cho, Yongjoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.127-135
    • /
    • 2015
  • In this research, we conducted an experiment on evaluating the extending depth information method and surface reconstruction method and the interaction of these two methods in order to enhance the final intermediate view images, which are acquired using DIBR (Depth-Image-Based Rendering) method. We evaluated the experimental control groups using the Microsoft's "Ballet" and "Break Dancer" data sets with three different hole-filling algorithms. The result revealed that the quality was improved the most by applying both extending depth information and surface reconstruction method as compared to the previous point clouds only. In addition, it found that the quality of the intermediate images was improved vastly by only applying extending depth information when using no hole-filling algorithm.

Models for Social Media-Based Governments

  • Khan, Gohar Feroz
    • Asia pacific journal of information systems
    • /
    • v.25 no.2
    • /
    • pp.356-369
    • /
    • 2015
  • Public sectors around the world utilize social media tools and technologies in their daily activities for a variety of purposes, including disseminating useful information, fostering mass collaboration, and enforcing laws and regulations. A number of social media-based government stage models have emerged to document this use. In this chapter, we conducted a qualitative meta-synthesis of four social media-based government models. These models include 1) the open government maturity model, 2) the social media utilization model, 3) the adoption process for social media, and 4) the social media-based engagement model. The concepts, metaphors, and themes contained in these developmental models are extracted through a series of in-depth semantic analyses of descriptions, resulting in a common frame of reference.

AdaMM-DepthNet: Unsupervised Adaptive Depth Estimation Guided by Min and Max Depth Priors for Monocular Images

  • Bello, Juan Luis Gonzalez;Kim, Munchurl
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.252-255
    • /
    • 2020
  • Unsupervised deep learning methods have shown impressive results for the challenging monocular depth estimation task, a field of study that has gained attention in recent years. A common approach for this task is to train a deep convolutional neural network (DCNN) via an image synthesis sub-task, where additional views are utilized during training to minimize a photometric reconstruction error. Previous unsupervised depth estimation networks are trained within a fixed depth estimation range, irrespective of its possible range for a given image, leading to suboptimal estimates. To overcome this suboptimal limitation, we first propose an unsupervised adaptive depth estimation method guided by minimum and maximum (min-max) depth priors for a given input image. The incorporation of min-max depth priors can drastically reduce the depth estimation complexity and produce depth estimates with higher accuracy. Moreover, we propose a novel network architecture for adaptive depth estimation, called the AdaMM-DepthNet, which adopts the min-max depth estimation in its front side. Intensive experimental results demonstrate that the adaptive depth estimation can significantly boost up the accuracy with a fewer number of parameters over the conventional approaches with a fixed minimum and maximum depth range.

  • PDF

Post-processing of 3D Video Extension of H.264/AVC for a Quality Enhancement of Synthesized View Sequences

  • Bang, Gun;Hur, Namho;Lee, Seong-Whan
    • ETRI Journal
    • /
    • v.36 no.2
    • /
    • pp.242-252
    • /
    • 2014
  • Since July of 2012, the 3D video extension of H.264/AVC has been under development to support the multi-view video plus depth format. In 3D video applications such as multi-view and free-view point applications, synthesized views are generated using coded texture video and coded depth video. Such synthesized views can be distorted by quantization noise and inaccuracy of 3D wrapping positions, thus it is important to improve their quality where possible. To achieve this, the relationship among the depth video, texture video, and synthesized view is investigated herein. Based on this investigation, an edge noise suppression filtering process to preserve the edges of the depth video and a method based on a total variation approach to maximum a posteriori probability estimates for reducing the quantization noise of the coded texture video. The experiment results show that the proposed methods improve the peak signal-to-noise ratio and visual quality of a synthesized view compared to a synthesized view without post processing methods.

A New Camera System Implementation for Realistic Media-based Contents (실감미디어 기반의 콘텐츠를 위한 카메라 시스템의 구현)

  • Seo, Young Ho;Lee, Yoon Hyuk;Koo, Ja Myung;Kim, Woo Youl;Kim, Bo Ra;Kim, Moon Seok;Kim, Dong Wook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.99-109
    • /
    • 2013
  • In this paper, we propose a new system which captures real depth and color information from natural scene and implemented it. Based on it, we produced stereo and multiview images for 3-dimensional stereoscopic contents and introduced the production of a digital hologram which is considered to the next-generation image. The system consists of both a camera system for capturing images which correspond to RGB and depth images and softwares (SWs) for various image processings which consist of pre-processing such as rectification and calibration, 3D warping, and computer generated hologram (CGH). The camera system use a vertical rig with two paris of depth and RGB camera and a specially manufactured cold mirror which has the different transmittance according to wavelength for obtaining images with the same view point. The wavelength of our mirror is about 850nm. Each algorithm was implemented using C and C++ and the implemented system can be operated in real-time.

Effects of Depth Map Quantization for Computer-Generated Multiview Images using Depth Image-Based Rendering

  • Kim, Min-Young;Cho, Yong-Joo;Choo, Hyon-Gon;Kim, Jin-Woong;Park, Kyoung-Shin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2175-2190
    • /
    • 2011
  • This paper presents the effects of depth map quantization for multiview intermediate image generation using depth image-based rendering (DIBR). DIBR synthesizes multiple virtual views of a 3D scene from a 2D image and its associated depth map. However, it needs precise depth information in order to generate reliable and accurate intermediate view images for use in multiview 3D display systems. Previous work has extensively studied the pre-processing of the depth map, but little is known about depth map quantization. In this paper, we conduct an experiment to estimate the depth map quantization that affords acceptable image quality to generate DIBR-based multiview intermediate images. The experiment uses computer-generated 3D scenes, in which the multiview images captured directly from the scene are compared to the multiview intermediate images constructed by DIBR with a number of quantized depth maps. The results showed that there was no significant effect on depth map quantization from 16-bit to 7-bit (and more specifically 96-scale) on DIBR. Hence, a depth map above 7-bit is needed to maintain sufficient image quality for a DIBR-based multiview 3D system.

RAY-SPACE INTERPOLATION BYWARPING DISPARITY MAPS

  • Moriy, Yuji;Yendoy, Tomohiro;Tanimotoy, Masayuki;Fujiiz, Toshiaki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.583-587
    • /
    • 2009
  • In this paper we propose a new method of Depth-Image-Based Rendering (DIBR) for Free-viewpoint TV (FTV). In the proposed method, virtual viewpoint images are rendered with 3D warping instead of estimating the view-dependent depth since depth estimation is usually costly and it is desirable to eliminate it from the rendering process. However, 3D warping causes some problems that do not occur in the method with view-dependent depth estimation; for example, the appearance of holes on the rendered image, and the occurrence of depth discontinuity on the surface of the object at virtual image plane. Depth discontinuity causes artifacts on the rendered image. In this paper, these problems are solved by reconstructing disparity information at virtual camera position from neighboring two real cameras. In the experiments, high quality arbitrary viewpoint images were obtained.

  • PDF

Improved depth evaluation using Epipolar geometry (Epipolar geometry를 활용한 개선된 depth 평가 방법)

  • Seong-Min Kim;Jong-Ki Han
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.99-102
    • /
    • 2022
  • 실재하는 물체나 장소를 디지털 카메라나 휴대폰 카메라로 여러 장 촬영하여 얻은 2차원 이미지 데이터셋으로부터 3차원 영상을 얻기 위해서 이미지를 이루는 각 pixel의 depth 정보를 얻는 것은 필수적인 과정이다. 주어진 이미지에서 depth 정보를 얻기 위해 Shuhan Shen은 PatchMatch 알고리즘을 활용하는 것을 제안하였다. 그 이후 PatchMatch 기반의 알고리즘은 널리 사용되며 우수한 성능을 보이고 있다. PatchMatch 기반의 알고리즘을 사용해 depth를 추정하는 과정에서 depth와 법선 벡터를 Zero-mean Normalized Cross Correlation(ZNCC)를 사용해 평가한다. 하지만, ZNCC는 depth를 평가하려는 pixel의 주변 pixel들의 밝기 값 혹은 색상 값의 분포를 사용하기 때문에 밝기 값이나 색상 값의 변화가 적은 texture-less region에서는 신뢰성이 떨어진다. 본 논문에서는 이 문제를 epipolar geometry를 활용한 기하학적 정보를 이용하여 개선하고자 한다.

  • PDF

Stereoscopic Effect of 3D images according to the Quality of the Depth Map and the Change in the Depth of a Subject (깊이맵의 상세도와 주피사체의 깊이 변화에 따른 3D 이미지의 입체효과)

  • Lee, Won-Jae;Choi, Yoo-Joo;Lee, Ju-Hwan
    • Science of Emotion and Sensibility
    • /
    • v.16 no.1
    • /
    • pp.29-42
    • /
    • 2013
  • In this paper, we analyze the effect of the depth perception, volume perception and visual discomfort according to the change of the quality of the depth image and the depth of the major object. For the analysis, a 2D image was converted to eighteen 3D images using depth images generated based on the different depth position of a major object and background, which were represented in three detail levels. The subjective test was carried out using eighteen 3D images so that the degrees of the depth perception, volume perception and visual discomfort recognized by the subjects were investigated according to the change in the depth position of the major object and the quality of depth map. The absolute depth position of a major object and the relative depth difference between background and the major object were adjusted in three levels, respectively. The details of the depth map was also represented in three levels. Experimental results showed that the quality of the depth image differently affected the depth perception, volume perception and visual discomfort according to the absolute and relative depth position of the major object. In the case of the cardboard depth image, it severely damaged the volume perception regardless of the depth position of the major object. Especially, the depth perception was also more severely deteriorated by the cardboard depth image as the major object was located inside the screen than outside the screen. Furthermore, the subjects did not felt the difference of the depth perception, volume perception and visual comport from the 3D images generated by the detail depth map and by the rough depth map. As a result, it was analyzed that the excessively detail depth map was not necessary for enhancement of the stereoscopic perception in the 2D-to-3D conversion.

  • PDF