• Title/Summary/Keyword: mechanochemical process

Search Result 61, Processing Time 0.031 seconds

Treatment of Phenol Contaminated Soil Using Sulfidated Zero-Valent Iron as a Persulfate Activator for Advanced Oxidation Process (황화영가철 기반의 과황산 고도산화공정을 이용한 페놀 오염토양 처리)

  • Hyuk Sung Chung;Nguyen Quoc Bien;Jae Young Choi;Inseong Hwang
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • A persulfate(PS)/sulfidated microscale zero-valent iron(S-mZVI) system was tested for treating a soil contaminated with phenol. Sulfidation of bare mZVI was conducted using a mechanochemical process utilizing a ball mill in order to improve persulfate activation capacity and stability of unmodified mZVI. The synthesized S-mZVI performed markedly better than the bare mZVI in activating PS. The optimum molar ratio of sulfur to mZVI was around 0.12. In the soil slurry experiments, a very rapid and complete removal of phenol was observed at the optimum molar ratios of PS to S-mZVI of 2:1 and PS to phenol of 16:1. The phenol removal efficiencies decreased as the water content of the slurries decreased. This was believed to be due to increased soil oxidant demand as the amount of soil was increased as relative to the water content. To evaluate the field applicability of the process, slurry experiments adopting high soil contents were carried out that simulated in-situ soil mixing conditions. These experiments resulted in substantially compromised degradation efficiencies of 54.3% and 43.8% within 4 hours. The current study generally shows that the PS/S-mZVI process has a potential to be developed into a remediation technology for soils contaminated with organics.

Effect of Ball-milling on Hydrogen-reduction Behavior of WO3-CuO (WO3-CuO의 수소환원거동에 미치는 볼 밀링의 영향)

  • Kim, Dae-Gun;Shim, Woo-Seok;Kim, Young-Do
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.631-634
    • /
    • 2003
  • To fabricate W-Cu nanocomposite powder, $WO_3$-CuO powder mixture was high-energetically ball-milled and subsequently hydrogen-reduced. The effect of ball-milling on the hydrogen-reduction behavior of$ WO_3$-CuO was investigated with non-isothermal hygrometric analysis during hydrogen-reduction. Increasing the ball-milling time, the reduction peak temperatures of humidity curves were shifted to low temperature. It was considered that the reduction temperature should be decreased because the specific surface area of each oxide considerably increased with increasing the ball-milling time. In case of ball-milling for 0 h, $WO_3$and CuO were independently hydrogen-reduced and W particles were nucleated on the surface of Cu adjacent to W by CVT. However, in case of ball-milling for 50 h, the aggregates of about 200-300 nm were observed. W particles of size below 30-50 nm were homogeneously distributed with Cu in the aggregates.

Properties and Application of Metal Sulfide Powder

  • Park, Dong-Kyu;Bae, Sung-Yeal;Ahn, In-Shup;Jung, Kwang-Chul
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.918-920
    • /
    • 2006
  • Metal sulfide powders such as MnS, $MoS_2$ and FeS are simply used to the machinery processing improvement agent and solid lubricant in powder metallurgy industrial. And then, metal sulfide powders have received relatively little attention from powder metallurgy. Recently, the portable machine is one of the important interfaces between human or human and electronic machine. With the increase of the intelligent activity, the social and industrial demands for information display device and power source are increasing. The transition metal sulfide materials (FeS, ZnS) have received considerable attention due to the large variety of its electric, optical and magnetic properties. Among the metal sulfide, $FeS_2$ is appealing superior material for applications in $Li-2^{nd}$ battery because of high capacity. ZnS is also a famous phosphor material with various luminescence properties, such as photoluminescence (PL) and electroluminescence (EL). So generally used in the fields of display, sensors and laser. Metal sulfide materials, therefore, are provided for most widely application in all industries. In recent years, material researchers have become increasingly interested in studying with synthesis of metal sulfide.

  • PDF

Sintering and Dielectric Characteristics of LaAlO3 Ceramics by Mechanochemical Treatment from La2O3-A12O3 and La2O3-Al(OH)3 (La2O3-Al2O3와 La2O3-Al(OH)3를 메카노케미칼로 처리한 LaAlO3세라믹스의 소결 및 유전특성)

  • 최상수;조정호;김강언;정수태;조상희
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.68-73
    • /
    • 2002
  • The dielectric properties and synthesis of $LaAlO_3$ ceramics from mixtures of $La_2O_3-Al_2O_3$ (LAO) and $La_2O_3-Al(OH)_3$(LAH) via grinding process were investigated. The single phase $LaA1O_3$of LAO and LAH powders were formed at $1300^{\circ}C$ and $1000^{\circ}C$, respectively. A non-reacted $La_2O_3$ existing in calcined powder was changed to La(OH)$_3$by moisture in the air, and their samples were worse than those of the samples made from a $LaA1O_3$single phase powder. The densities of LAO samples sintered at 150$0^{\circ}C$ for 4 h and LAH samples sintered at $1400^{\circ}C$ for 4 h were 97.3% and 98.3% of theory density, respectively. Grains of LAH sample showed uniformity and their sizes were 0.75 ${\mu}{\textrm}{m}$, and LAO samples showed non-uniformity and their sizes were 4-5 ${\mu}{\textrm}{m}$. Dielectric constant of LAO and LAH samples were the same value (≒22), however dielectric loss of LAH sample (0.0003) were lower than that of LAO sample(0.001)due to grain size.

Mineralogical Transformation of Gold-silver Bearing Sulfide Concentrate by Mechanochemical Activation, and their Gold-silver Leaching with Non-cyanide Solution (기계적-화학적 활성화에 따른 금-은-정광의 광물학적 상변화와 비-시안 용매에 의한 금-은 용출 향상)

  • Kim, Bong-Ju;Cho, Kang-Hee;Oh, Su-Ji;Choi, Nag-Choul;Park, Cheon-Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.115-124
    • /
    • 2014
  • In order to leach Au and Ag from gold-silver bearing sulfide concentrate, the sulfide concentrate was ground in a ball mill for a dry pre-treatment and a wet pre-treatment process. Mineralogical studies and thiourea leaching experiments were carried out with the pre-treated sulfide concentrate. The results of the pre-treatment with the concentrate samples showed the mean particle size and iso-electrical potential was smaller in the dry pre-treatment sample than in the concentrate sample, and the contents was lower in the wet pre-treatment sample than in the dry pre-treatment sample. In XRD analysis, amorphous properties were only shown in the wet pretreatment sample. The results of the concentrate sample leaching experiments showed that the best Au, Ag leaching parameters were when the addition of thiourea was at a 1.0 g concentration, ferric sulfate was 1.0 M, sulfuric acid was 2.0 M and the leaching temperature was at $60^{\circ}C$. The Au, Ag leaching rate was always much greater and faster with the wet pre-treatment samples than with the dry pre-treatment samples. Accordingly, it is expected that more Au, Ag can be leached in an eco-friendly methodology using wet pre-treatment. The pre-treatment could be improved with an optimized grinding additive reagent and through researching grinding time in future non-cyanide processes.

New Magnetic Phases of Fe-N and Mn-Al Alloys Produced by Mechanochemical Milling (기계적 밀링 및 화학적 추출법에 의해 제조한 Fe-N 및 Mn-Al계의 새로운 자성재료)

  • Kyu-Jin Kim;Tae-Hwan Noh;Kenji Suzuki
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.4
    • /
    • pp.347-354
    • /
    • 1994
  • The structural change and magnetic properties of mechanically milled Fe-N and Mn-Al alloy powders have been investigated by XRD, TEM, VSM, $M\"{o}ssbauer$ spectroscopy and inelastic neutron scattering measurements. During milling of ${\gamma}'-Fe_{4}N$ powders, and fcc ${\gamma}'-Fe_{4}N$ phase is transformed to a bct ${\alpha}'-Fe(N)$ phase by stress-induced martensitic transformation, being accompanied by an initial increase in saturation magnetization. During annealing the bct ${\alpha}'-Fe(N)$ nanocrystalline phase which is obtained by mechanical grinding for a long time, an ${\alpha}'-Fe_{16}N_{2}$ phase partially appears as an intermediate phase at 673~773 K, causing an increase in saturation magnetization. During milling of Mn-45, 70 and 85 at.% Al mixed powders, Al atoms are partially solubilized into an ${\alpha}-Mn$ phase. The Al supersaturated ${\alpha}-Mn-type$ phases change from paramagnetic to ferromagnetic : the saturation magnetization is 11 emu/g for the as-milled Mn-70 at.% Al powders. Moreover, by removing almost all Al atoms from the as-milled Mn-85 at.% Al powders using chemical leaching, the saturation magnetization increases up to 36 emu/g. The above bct ${\alpha}'-Fe(N)$ and ferromagnetic ${\alpha}-Mn$ type alloys are the magnetic materials found for the first time, by using the present mechanochemical process.

  • PDF

The Formation of Absorption Layer for the CIGS Solar Cell by Aerosol Deposition Method (Aerosol Deposition 법을 이용한 CIGS 태양전지의 광흡수층 형성)

  • Kim, In Ae;Shin, Hyo Soon;Yeo, Dong Hun;Jeong, Dae Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.909-914
    • /
    • 2013
  • CIGS is one of thin film solar cell and has been studied so much, because of the possibility of low price and high efficiency. Until now, co-evaporation and sputtering were typical method to prepare CIGS absorption layer, and a few company commercialized solar cell by these method. However, non-vacuum process which has been studied for long time has not been progressed, though the merit of low price. Especially, aerosol deposition method has not been reported, because it is difficult to prepare a large quantity of various CIGS powder. In this study, CIGS powder was synthesized by mechanochemical method and CIGS absorption layer was deposited by aerosol deposition method. The thickness of the CIGS layer was controlled by the number of deposition and the surface roughness of it was affected by the amount of flow gas. And, also, I-V curve of it appeared metallic property in the case of 'as deposition'. After heat treatment in Se-rich atmosphere, the electrical property of it changed to a semiconductor. CdS and transparent conduction layer were formed by a typical method on it for solar cell. The efficiency of cell was appeared 0.19%. Though the efficiency was low because of the disharmony in the after-process, it was conformed that CIGS solar cell could be prepared by aerosol deposition.

Recycling of Separate Glass Fiber from Waste Printed Circuit Boards Using Attrition Mill and DMF (어트리션 밀과 DMF 용매를 이용한 폐 인쇄회로기판에서 분리된 재생 유리섬유의 재활용)

  • Kim, Jong-Seok;Lee, Jae-Cheon;Jeong, Jin-Ki
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.894-899
    • /
    • 2012
  • In recent years, recycling process has come to be necessary for separating metals, glass fibers and polymer from WPCBs (waste printed circuit boards) due to an increasing amount of electronic device waste. In this study, dimethylformamide (DMF) and attrition mill reactor were used to separate the component such as metals, glass fiber and epoxy resin from WPCBs. Separation of glass fiber from WPCBs was carried out under stirring rates 300~600 revolution per minute (rpm) for 1~2 h as the various agitator. The recycled glass fibers (RGF) were analyzed by thermogravimetric analyzer (TGA) for degree of separation of epoxy resin in the WPCBs. The degree of separation of epoxy resin of WPCBs increased in attrition mill agitator as a mechanochemical process for recycling WPCBs. The RGF separated in the WPCBs was applied as a reinforcement in the RGF/unsaturated polyester composites to reuse as a reinforcement.

Estimaion of the sintering and forging characteristics of the W/Cu nanocomposite powders produced by the spray conversion process (Spray conversion 법으로 제조된 W/Cu 나노복합분말의 소결특성 및 단조특성 평가)

  • 김태형;노준웅;김은표
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2002.11a
    • /
    • pp.36-36
    • /
    • 2002
  • 최근 한국기계연구원에서 개발된 Mechanochemical process (MCP)는 Spray conversion 법에 의하여 나노크기의 W/Cu 복합 분말을 제조하는 방법으로서, 현재 (주)나노테크에서 산업화를 위한 시험/개발이 진행 중이다. 이 방법에 의하여 W /1 0 ~ 40wt. %Cu 조성의 초미렵 W/Cu 복합 분말의 양산화가 가능하게 됨으로써, 나노복합분말을 사용한 초미립 W/Cu 합금의 소결 제조 연구 역시 나 노태크에서 분말사업화와 동시에 수행되고 있다. 현재 Spray conversion 법으로 제조되고 있는 W/Cu 나노복합분말 및 그 소결체는 Cu의 조성범 위에 따라 민수용 및 군수용 제품으로의 적용이 시도되고 있으며, 각기 특성향상을 목표로 각 적용 분야에서 요구되는 제반 성능에 대한 검토가 이루어지고 있다. 특히 군수용의 목적으로 사용될 경우, 정적 및 동적부하상태에서 재료의 균일한 변형이 가장 중요한 특성이다. 현 개발품의 경우, 일반 W 빛 Cu 원료에 비하여 상대적으로 높은 순도의 원료를 사용하였기 때문에 분말 및 소재상태 에서의 순도가 높아서, 연성을 저하시키는 것으로 알려진 기지상내 합금원소 또는 interface 게재물 이 존재할 가능성이 매우 낮다. 또한 초미립 W 입자들과 Cu 상의 혼합도가 극대화된 상태이기 때문에 상대적으로 저옹에서도 완전치밀화된 미세조직을 얻을 수 있는데, 이는 분말상태의 균일한 미세구조를 유지할 수 있으며, 동시에 W 업자간의 과도한 neck 형성을 방지함으로써 기계적 변형시 재료의 연성 향상이 기대된다. 이러한 W/Cu 나노복합분말 소결체의 특성은 균일한 밀도분포와 동시에 과도한 동적 부하상태에서 균일한 변형이 보장되어야만 하는 특정 군수용 목적에 잘 부합하는 것으로 판단된다. 본 고에서는 상기한 W/Cu 나노복함분말을 사용하여 균일한 미세구조를 가지는 완전치밀화된 소결재를 제조하는 과정과 제조된 소결재를 향후 군수용 제품에 척용시키기 위하여 진행된 단조특성에 대한 연구결과틀을 재료의 미세구조척 관점에서 논의하였다.

  • PDF

Advancements in High-Efficiency Ammonia Synthesis Technology: A Key Solution for Green Hydrogen Storage in the Carbon-Neutral Era (청정 수소 저장을 위한 고효율, 저탄소 배출 암모니아 합성기술 동향)

  • Weonjun Jeong;Jintae Kim;Kanghee Cho
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.71-93
    • /
    • 2024
  • Recently, the establishment of a hydrogen-based economy and the utilization of low-carbon energy sources, particularly for shipping and power generation, have been in high demand in order to achieve carbon neutrality by 2050. In particular, ammonia is gaining renewed attention because it is capable of serving as a key facilitator for high-efficiency green hydrogen storage and transportation and it is also capable of serving as a low-carbon energy source. Although ammonia can be synthesized through the Haber-Bosch process, the high energy consumption and carbon emissions associated with this process result in minimal carbon reduction. To address the critical drawbacks of the traditional Haber-Bosch process, various thermochemical synthesis methods have been developed recently, allowing for the synthesis of ammonia with lower carbon emissions and a higher energy efficiency. Research is also progressing in the development of high-performance catalyst materials that are capable of demonstrating sufficient ammonia synthesis performance under milder process conditions compared to conventional methods. Additionally, a variety of different processes such as chemical-looping ammonia synthesis, plasma synthesis, and mechanochemical synthesis are being applied diversely. This review aims to provide a detailed overview of the emerging ammonia synthesis technologies that have been developed to effectively store green hydrogen for future applications.