• Title/Summary/Keyword: mechanistic model

Search Result 177, Processing Time 0.023 seconds

Optimization of Reflectron for Kinetic and Mechanistic Studies with Multiplexed Multiple Tandem (MSn) Time-of-flight Mass Spectrometry

  • Bae, Yong-Jin;Yoon, So-Hee;Moon, Jeong-Hee;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.92-99
    • /
    • 2010
  • Photoexcitation of a precursor ion inside a cell floated at high voltage installed in a tandem time-of-flight (TOF) mass spectrometer provides triple tandem mass spectrometric information and allows kinetic and mechanistic studies. In this work, the factors affecting, or downgrading, the performance of the technique were identified. Ion-optical and computational analyses showed that an optimum instrument could be designed by utilizing a reflectron with linear-plus-quadratic potential inside. Theoretical predictions were confirmed by tests with instruments built with different ion-optical layout. With optimized instruments, masses of intermediate ions in the consecutive dissociation of a precursor ion could be determined with the maximum error of $\pm5$ Da. We also observed excellent agreement in dynamical parameters (critical energy and entropy) for the dissociation of a model peptide ion determined by instruments with different ion-optical layout operated under optimum conditions. This suggests that these parameters can be determined reliably by the kinetic method developed previously when properly designed and operated tandem TOF instruments are used.

Development of a Mechanistic Model for Hydrogen Generation in Fuel-Coolant Interactions

  • Lee, Byung-Chul;Park, Goon-Cherl;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.99-109
    • /
    • 1997
  • A dynamic model for hydrogen generation by Fuel-Coolant Interactions(FCI) is developed with separate models for each FCI stage, coarse mixing and stratification. The model includes the physical concept of FCI, semi-empirical heat and mass transfer correlation and the concentration diffusion equation with the general non-zero boundary condition. The calculated amount of hydrogen, which is mainly generated in stratification, is compared with the FITS experiments. The model developed in this study shows a good agreement within a range of 10 % fuel oxidation rate and predicts the controlled mechanism of the chemical reaction very well. And this model predicts more accurately than the previous works. It is shown from the sensitivity study that the higher initial temperature of fuel particle is, the larger the reaction rate is. Up to 2700 K of temperature of the particle, the reaction rate increases rapid, which can lead to metal ignition.

  • PDF

A PRESSURE DROP MODEL FOR PWR GRIDS

  • Oh, Dong-Seok;In, Wang-Ki;Bang, Je-Geon;Jung, Youn-Ho;Chun, Tae-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.483-488
    • /
    • 1998
  • A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development.

  • PDF

The Response Prediction of Flexible Pavements Considering Nonlinear Pavement Foundation Behavior (비선형 포장 하부 거동을 고려한 연성 포장의 해석)

  • Kim, Min-Kwan
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.165-175
    • /
    • 2009
  • With the current move towards adopting mechanistic-empirical concepts in the design of pavement structures, state-of-the-art mechanistic analysis methodologies are needed to determine accurate pavement responses, such as stress, strain, and deformation. Previous laboratory studies of pavement foundation geomaterials, i.e., unbound granular materials used in base/subbase layers and fine-grained soils of a prepared subgrade, have shown that the resilient responses followed by nonlinear, stress-dependent behavior under repeated wheel loading. This nonlinear behavior is commonly characterized by stress-dependent resilient modulus material models that need to be incorporated into finite element (FE) based mechanistic pavement analysis methods to predict more realistically predict pavement responses for a mechanistic pavement analysis. Developed user material subroutine using aforementioned resilient model with nonlinear solution technique and convergence scheme with proven performance were successfully employed in general-purpose FE program, ABAQUS. This numerical analysis was investigated in predicted critical responses and domain selection with specific mesh generation was implemented to evaluate better prediction of pavement responses. Results obtained from both axisymmetric and three-dimensional (3D) nonlinear FE analyses were compared and remarkable findings were described for nonlinear FE analysis. The UMAT subroutine performance was also validated with the instrumented full scale pavement test section study results from the Federal Aviation Administration's National Airport Pavement Test Facility (FAA's NAPTF).

  • PDF

Theoretical Model for the Electrical Resistance of Skin (피부의 전기적 저항에 대한 이론적 모델)

  • Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.207-213
    • /
    • 1996
  • The kinetic change of electrical resistance of hairless mouse skin as a function of ionic strength of the bathing medium was determined from impedance measurements. After increasing (decreasing) the ionic strength of the bathing medium, resistance decreased (increased) continuously with time, finally reaching an equilibrium value. We have modelled this process, using nonsteady-state diffusion kinetics. The results show semi-quantitative correlation between theoretically derived and experimentally obtained values. Overall, this work provides further mechanistic insight into ion-conduction through the skin.

  • PDF

Comparative Study of $Cu^{2+}$ Adsorption of Goethite, Hematite and Kaolinite : Mechanistic Modeling Approach

  • 정진호;조영환;한필수
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.3
    • /
    • pp.324-327
    • /
    • 1998
  • The mechanisms of Cu2+ adsorption onto goethite, hematite and kaolinite are different. Goethite and hematite showed a similar adsorption behavior (ionic-strength independent), but kaolinite gave somewhat different result (ionic-strength dependent). These experimenal results were successfully simulated using a surface complexation model, TLM, which defines the inner- or outer-sphere complex. The chemical nature of Cu2+ adsorption onto kaolinite was qualitatively identified by EPR spectroscopy.

Threshold burnup for recrystallization and model for rim porosity in the high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.279-284
    • /
    • 1998
  • Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75${\mu}{\textrm}{m}$ and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup.

  • PDF

A Mechanistic Model for 3 Dimensional Cutting Force Prediction Considering Ploughing Force in Face Milling (정면밀링가공에서 쟁기력을 고려한 3차원 절삭력 모델링)

  • 권원태;김기대
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • Cutting force is obtained as a sum of chip removing force and ploughing force. Chip removing force is estimated by multiplying specific cutting pressure by cutting area. Since ploughing force is caused from dullness of a tool, its magnitude is constant if depth of cut is bigger than a certain value. Using the linearity of chip removing force to cutting area and the constancy of ploughing force regardless of depth of cut which is over a certain limit each force is separated from measured cutting force and used to establish cutting force model. New rotation matrix to convert the measured cutting force in reference axes into the forces in cutter axes is obtained by considering that tool angles are projected angles from cutter axes to reference axes.. Spindle tilt is also considered far the model. The predicted cutting force estimated from the model is in good agreement with the measured force.

Influence of ambient groundwater flow on DNAPL migration in a fracture network

  • 지성훈;여인욱;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.43-46
    • /
    • 2003
  • We consider influences of the aperture variation and the ambient groundwater flow on the migration of DNAPL within a fracture network. In context of a modified invasion percolation (MIP) growth algorithm, we formulate a mechanistic model that includes capillary and gravity forces as well as viscous forces within the DNAPL and the ambient groundwater. The MIP model is verified against laboratory experiments, which is conducted using a two-dimensional random fracture network model. The results show that the aperture variation and ambient groundwater flow can be significant factors controlling DNAPL migration path within fracture networks.

  • PDF

A Development of a Transient Hydrogen Generation Model for Metal-Water Interactions

  • Lee, Jin-Yong;Park, Goon-Cherl;Lee, Byung-Chul
    • Nuclear Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.549-558
    • /
    • 2000
  • A transient model for hydrogen generation in molten metal-water interactions was developed with separate models for two stages of coarse mixing and stratification. The model selves the mechanistic equations (heat and mass transfer correlation, heat conduction equation and the concentration diffusion equation) of each stage with non-zero boundary conditions. Using this model, numerical simulations were performed for single droplet experiments in the Argonne National Laboratory tests and for FITS tests that simulated dynamic fragmentation and stratification. The calculation results of hydrogen generation showed better agreement to the experiment data than those of previous works. It was found from the analyses that the steam concentration to be reached at the reaction front might be the main constraint to the extent of the metal droplet oxidized. Also, the hydrogen generation rate in the coarse mixing stage was the higher than that in the stratification stage. The particle size was the most important factor in the coarse mixing stage to predict the amount of hydrogen generation.

  • PDF