• Title/Summary/Keyword: mechanism study

Search Result 15,763, Processing Time 0.049 seconds

The Study Fire Mechanism and Real Fire Correlation of Power Condenser (전력용 콘덴서의 화재메커니즘과 실제 화재상관관계 연구)

  • Baek, Donghyun
    • Fire Science and Engineering
    • /
    • v.31 no.6
    • /
    • pp.112-117
    • /
    • 2017
  • This research discusses the correlation about fire mechanism based on real fire cases. Electric power condenser failure mechanism is classified into 7 steps and fire mechanism is classified into 12 steps. In the 5th step, the procedure of operating a protection channel of a protection relay was identical in the case of the failure and fire. As the fire occurrence mechanism was applied from the 6th step, internal pressure was increased because of gas generation produced by internal combustion phenomenon and arc. This caused explosion in 10st step of fire occurrence mechanism. In 11th step, the flame such as arc gushed out with insulating oil which caused fire and leaded to second accident. This kind of step correlation could play an important part to examine fire.

Kinematic Calibration Method for Redundantly Actuated Parallel Mechanisms (여유구동 병렬기구의 기구학적 보정)

  • 정재일;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.355-360
    • /
    • 2002
  • To calibrate a non-redundantly actuated parallel mechanism, one can find actual kinematic parameters by means of geometrical constraint of the mechanism's kinematic structure and measurement values. However, the calibration algorithm for a non-redundant case does not apply fur a redundantly actuated parallel mechanism, because the angle error of the actuating joint varies with position and the geometrical constraint fails to be consistent. Such change of joint angle error comes from constraint torque variation with each kinematic pose (meaning position and orientation). To calibrate a redundant parallel mechanism, one therefore has to consider constraint torque equilibrium and the relationship of constraint torque to torsional deflection, in addition to geometric constraint. In this paper, we develop the calibration algorithm fir a redundantly actuated parallel mechanism using these three relationships, and formulate cost functions for an optimization algorithm. As a case study, we executed the calibration of a 2-DOF parallel mechanism using the developed algorithm. Coordinate values of tool plate were measured using a laser ball bar and the actual kinematic parameters were identified with a new cost function of the optimization algorithm. Experimental results showed that the accuracy of the tool plate improved by 82% after kinematic calibration in a redundant actuation case.

  • PDF

A Study on the Kinetodynamic Analysis for General Disk Cam Driving Slider Mechanisms (캠구동 슬라이더기구의 기구동역학 해석에 관한 연구)

  • Shin, Joong-Ho;Kim, Jong-Soo;Ha, Kyong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.871-883
    • /
    • 1997
  • Kinetodynamics of a cam driving slider mechanism consists of kinematic analysis and force analysis. The kinematic analysis is to determine the kinematic characteristics of a cam driving mechanism and a slider mechanism. The force analysis is to determine the joint forces of links, the contact forces of the cam and follower, and the driving torque of a main shaft. This paper proposes a close loop method and a tangent substitution method to formulate the relationships of kinematic chains and to calculate the displacement, velocity and acceleration of the cam driving slider mechanism. Also, and instant velocity center method is proposed to determine the cam shape from the geometric relationships of the cam and the roller follower. For dynamic analysis, the contact force and the driving torque of the cam driving slider mechanism are calculated from the required sliding forces, sliding motion and weight of the slider.

Performance analysis of multiple access mechanism based on error adaptation in CDMA cellular system (CDMA 셀룰러 시스템용 오율 적응 다중 엑세스 기법의 성능분석)

  • 송상호;조동호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.3
    • /
    • pp.713-720
    • /
    • 1996
  • In recent, the demand of mobile communication system is increasing rapidly. However, since wireless resources is limitted, the protocol to utilize wireless resource efficiently is needed. Up to now, Slotted CDMA_ALOHA(S_CDMA_ALOHA) and Mini-Slotted CDMA_ALOHA(MS_CDMA_ALOHA) methods are proposed as a CDMA_ALOHA mechanism, and it is turned out that MS_CDMA_ALOHA offers betterperformance than S_CDMA_ALOHA mechanism. Also, IS-95 multiple access mechanism has been proposed as common air interface(CAI) protocol of CDMA digital cellular system. However, in former study, the performance evaluations were made without considertion of chnnel characteristics of wireless communication environment. In this paper, a new access mechanism for improring the performance in the DS/CDMA digital cellular environment is suggested. This mechanism is adaptive to the channel condition and based on the conventional MS_CDMA_ALOHA mechanism. Also, the performance of new access mechanism is compared with that of conventional mechanisms, through computer simulation. According tot h simulation results, it is shown that the proposed NA_CDMA_ALOHA(Noise-Adaptation CDMA_ALOHA) mechanism offers better performance than conventional three CDMA_ALOHA mechanisms in view of mean delay time and system throughput characteristics. This phenomenon is due to the fast that NA_CDMA_ALOHA mechanism controls the access attempts efficiently based on the channel condition in heavy traffic environments.

  • PDF

A Study on the Focal Mechanism of the Hongsung Earthquake from the P-Wave Polarity Distributions (초동극성분포를 이용한 홍성지진의 Focal Mechanism 연구)

  • 김준경
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.121-136
    • /
    • 1991
  • The focal mechanism of the Hongsung Earthquake (1978. Oct. 7, M$_L$=5.0, Latitude 36.62N, Longitude 1 26.67E) was evaulated using the polarity distribution of the P-Waveforms. Through the non-linear computer process, the compatibility of polarity distributions of the 9 P-Waveforms observed at teleseismic distances from the Hongsung Earthquake epicenter was investigated to those of the focal mechanism determined from the varying strike, dip and rake angles. The resultant values for the strike and dip angle of the principal fault plane, which apparently matches very well the sunface lineament of the Hongsung region, are determined to be about 247 degree and 78 degree with uncertainties, respectively. However, the rake angle of the focal mechanism has wide range of 40 degree to 160 degree, which is mainly due to the poor coverage of the azimuthal angle of the observed seismic stations. Due to the consistency of principal stress axes, the resultant focal mechanism could support the current stress regime of that region, which may be caused by subduction of the Pacific Plate under the Eurasia Plate along the Japan Trench. It also provides information of seismic source characteristics of the part of the Korean Peninsula for aseismic design criteria such as Site Specific Response Spectrum and Strong Ground Motion Time History for the nuclear power plants and related nuclear waste disposal facility sites.

  • PDF