• Title/Summary/Keyword: mechanism of strength development

Search Result 164, Processing Time 0.03 seconds

A Study on the Micro-mechanical Characteristics of Titanium Metal Matrix Composites (티타늄 금속기 복합재료의 미시-기계적 특성에 관한 연구)

  • 하태준;김태원
    • Composites Research
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 2004
  • Vacuum hot pressing has been used for the development of titanium metal matrix composites using foil-fiber-foil technique. Subsequent micro-mechanical characteristics of the composites are then investigated by means of several experimental methods. The levels of consolidation, together with mechanism based failure processes of the materials have been analyzed by employing a thermo-acoustic emission technique. As shown by the results, fiber strength degradation occurs during the consolidation, and particularly residual stresses results from the thermal expansion mismatch between fiber and matrix materials during cooling process are incorporated in the changes of mechanical properties of the finished products. In industrial applications, both qualitative and quantitative evaluations of the material-mechanical characteristics are particularly important, and therefore must be included in process development. The present paper represents a methodology by which this can be achieved.

Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills (다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

Technique Proposal of Auto-Sensing Hydraulic Breaker with Stepwise Impact Stroke Variable Mechanism (단계적 타격 스트로크 가변 메커니즘이 적용된 지능형 유압브레이커의 기술 제안)

  • Lee, Dae Hee;Noh, Dae Kyung;Lee, Dong Won;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.9-21
    • /
    • 2018
  • The aim of this study was to develop and test a model of an auto-sensing hydraulic breaker that can automatically change its 4-step impact mode according to the rock strength using SimulationX. The auto-sensing hydraulic breaker with a 4-step variable impact mode has the advantage of obtaining optimal impact energy and impact frequency under various rock conditions compared to an auto-sensing hydraulic breaker with a 2-step variable impact mode, which has already been developed overseas. Several steps were necessary to conduct this study. First, the operation principle of the auto-sensing hydraulic breaker with the 2-step variable impact mode was analyzed. Based on the findings, an analysis model of the auto-sensing hydraulic breaker with the 4-step variable impact mode was developed (and compared with the 2-step variable impact mode) Finally, an analysis of the results established that the stepwise variable of the impact mode was implemented according to the rock strength and the difference of each impact mode was confirmed. This study is expected to contribute to the development of auto-sensing hydraulic breakers that are superior to those developed by advanced companies in foreign countries.

Framed Steel Plate Wall subject to Cyclic Lateral Load (주기하중을 받는 골조강판벽의 실험연구)

  • Park, Hong Gun;Kwack, Jae Hyuk;Jeon, Sang Woo;Kim, Won Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.781-792
    • /
    • 2004
  • Experiments were performed to study the cyclic behavior of framed steel walls with thin web plates. Five specimens of single-bay and three-story steel plate walls were tested for cyclic lateral load. The parameters for the test specimens included the plate thickness and the column strength. Based on the test results, the strength, deformability, and energy dissipation capacity of the framed steel walls were studied. The test results showed that the behavioral characteristics of the framed steel walls with thin web plates were different in many aspects from those of the conventional braced frame, and the steel wall with a stiffened web plate exhibited cantilever action, high strength, and low ductility. With the framed steel plate walls, local plate buckling and tension-field action developed in the thin web plates, and plastic deformation was uniformly distributed along the wall's height. As a result, the framed steel plate walls exhibited combined flexural and shear deformation, but they also showed high strength and energy dissipation capacity. Moreover, such walls have high deformability, which was equivalent to that of the conventional moment frame. Frame members such as columns and beams, however, must be designed to resist the tension-field action of the thin web plates. If the column does not have sufficient strength, and if its sections are not compact enough, the overall strength of the framed steel wall might be significantly decreased by the development of the soft-story mechanism. The framed steel walls with thin web plates have advantages, such as high deformability and high strength. Therefore, they can be used as ductile elements in earthquake-resistant systems.

Load Transfer Mechanism of the Hybrid Beam-Column Connection System with Structural Tees (T 형강을 사용한 합성골조 보-기둥 접합부의 하중전달 메카니즘)

  • 김상식;최광호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.823-829
    • /
    • 2002
  • The composite frame system with reinforced concrete column and steel beam has some advantages in the structural efficiency by complementing the shortcomings between the two systems. The system, however has also a lot of problems in practical design and construction process due to the material dissimilarities. Considering these circumstances, this research is aimed at the development of the composite structural system which enables the steel beams to be connected to the R/C columns with higher structural safety and economy. Basically the proposed connection system is composed of four split tees, structural angles reinforced by stiffener, high strength steel rods, connecting plates and shear plates. The structural tests have been carried out to verify the moment transfer mechanism from beam flange to steel rods or connecting plates through the angle reinforced by siffener. The four prototype specimens have been tested until the flange of beam reached the plastic states. From the tests, no distinct material dissimilarities between concrete and steel have been detected and the stress transfer through wide flange beam - structural angle - high strength steel rod or connecting plate is very favorable.

Development of Expert System for Designing Power Transmission Gears (II) (동력전달용 치차설계 전문가 시스템 개발연구 II)

  • 정태형;변준형;이동형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.122-131
    • /
    • 1992
  • An expert system is developed which can design the power transmission involute cylindrical gears on the basis of strength and durability. Bending strength, surface durability, scoring, and wear probability are considered as the basis. The basic components of the expert system are knowledge base, inference engine, and working memory. The knowledges in knowledge base are classified hierarchically into the knowledges used in selection of gear type, selection of materials, and determination of K factor and are represented by rules. In the inference engine two inference methods are implemented with the depth first search method. For-ward chaining method is introduced in the selection of gear type and materials and in the determination of K factor. Backward chaining method is introduced in the detailed design of module and face width in accordance with the validation of strength. And inference efficiency is achieved by constructing the part needing a lot of numerical calculations in strength estimation separately from inference mechanism. The working memory is established to save the results during inference temporarily. In addition, design database of past design results is built for consultation during design and knowledge acquisition facility, explanation facility, and user interface are included for the usefulness of user. This expert system is written with the PROLOG programming language and the FORTRAN language in numerical calculation part which interfaced with PROLOG and can also be executed on IBM-PC compatible computer operated by MS-DOS alone.

Development of a Rice Seed Pelleting Machine for Direct Seeding in Rice Cultivation (직파용 벼 펠렛종자 제조장치 개발)

  • 박종수;유수남;최영수;유대성
    • Journal of Biosystems Engineering
    • /
    • v.27 no.5
    • /
    • pp.381-390
    • /
    • 2002
  • Direct seeding of rice-seed pellets is expected to be an alternative for solving problems in current direct seeding cultivation of rice. but mass production of rice-seed pellets is prerequisite for practical application. Design. construction and performance evaluation of an experimental rice seed pelleting machine were carried out for mass production of rice-seed pellets. The pelleting machine intended to make a ball type rice-seed pellet, which have 3∼5 rice seeds and diameter of which is 12 mm. Pellet materials ; rice seeds, soil, and binder were mixed and kneaded by the mixer. The designed rice seed pelleting machine fed pellet materials by screw conveyor to forming rolls and made rice-seed pellets. Capacity, ratio of perfect rice-seed pellets, seed and pellet material loss were investigated as mixing ratio of soil to rice seed and feeding rate of pellet materials. The pelleting machine showed up to 37,000 pellets/h of pelleting rate, 61∼71% of weight ratio of perfect rice-seed pellets to pellet materials supplied, 17∼48% of seed loss ratio. Average weight and average diameter of the pellets were 1.66 g and 12.0 mm. respectively. More than 3 rice seeds were included in most pellets at 6 : 1 of mixing ratio of soil to rice seed. And compression strength of the pellets was in the range of 88-130 N. To improve performance of the pelleting machine, improvements of the forming rolls, feeding mechanism, and discharging mechanism for reducing loss of pellet materials and seeds damage are needed.

New Generation of Lead Free Paste Development

  • Albrecht Hans Juergen;Trodler K. G.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2004.09a
    • /
    • pp.233-241
    • /
    • 2004
  • A new alloy definition will be presented concerning increasing demands for the board level reliability of miniaturized interconnections. The damage mechanism for LFBGA components on different board finishes is not quite understood. Further demands from mobile phones are the drop test, characterizing interface performance of different package constructions in relation to decreased pad constructions and therefore interfaces. The paper discusses the characterization of interfaces based on SnPb, SnPbXYZ, SnAgCu and SnAgCuInNd ball materials and SnAgCuInNd as solder paste, the stability after accelerated tests and the description of modified interfaces strictly related to the assembly conditions, dissolution behavior of finishes on board side and the influence of intermetallic formation. The type of intermetallic as well as the quantity of intermetallics are observed, primaliry the hardness, E modules describing the ability of strain/stress compensation. First results of board level reliability are presented after TCT-40/+150. Improvement steps from the ball formulation will be discussed in conjunction to the implementation of lead free materials In order to optimize ball materials for area array devices accelareted aging conditions like TCTs were used to analyze the board level reliability of different ball materials for BGA, LFBGA, CSP, Flip Chip. The paper outlines lead-free ball analysis in comparison to conventional solder balls for BGA and chip size packages. The important points of interest are the description of processability related to existing ball attach procedures, requirements of interconnection properties and the knowledge gained the board level reliability. Both are the primary acceptance criteria for implementation. Knowledge about melting characteristic, surface tension depend on temperature and organic vehicles, wetting behavior, electrical conductivity, thermal conductivity, specific heat, mechanical strength, creep and relaxation properties, interactions to preferred finishes (minor impurities), intermetallic growth, content of IMC, brittleness depend on solved elements/IMC, fatigue resistance, damage mechanism, affinity against oxygen, reduction potential, decontamination efforts, endo-/exothermic reactions, diffusion properties related to finishes or bare materials, isothermal fatigue, thermo-cyclic fatigue, corrosion properties, lifetime prediction based on board level results, compatibility with rework/repair solders, rework temperatures of modified solders (Impurities, change in the melting point or range), compatibility to components and laminates.

  • PDF

Development of a numerical modelling technique for evaluation of a long-term chemical deterioration of tunnel shotcrete lining (터널 숏크리트 라이닝의 장기 화학적 열화 손상 평가를 위한 수치 모델링 기법 개발)

  • Shin, Hyu-Soung;Kim, Dong-Gyou
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.3
    • /
    • pp.299-307
    • /
    • 2007
  • In this study, a new concept for simulating a physical damage of tunnel shotcrete lining due to a long-term chemical deterioration has been proposed. It is known that the damage takes place mainly by internal cracks, reduction of stiffness and strength, which results mainly from volume expansion of the lining and corrosion of cement materials, respectively. This damage mechanism of shotcrete lining appears similar in most kinds of chemical reactions in tunnels. Therefore, the mechanical deterioration mechanism induced by a series of chemical reactions was generalized in this study and mathematically formulated in the framework of thermodynamics. The numerical model was implemented to a 3D finite element code, which can be used to simulate behaviour of tunnel structures undergoing external loads as well as chemical deterioration in time. A number of illustrative examples were given to show a feasibility of the model in tunnel designs.

  • PDF

Diagonal Tension Failure Model for RC Slender Beams without Shear Reinforcement Based on Kinematical Conditions (I) - Development

  • You, Young-Min;Kang, Won-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.7-15
    • /
    • 2007
  • A mechanical model was developed to predict the behavior of point-loaded RC slender beams (a/d > 2.5) without stirrups. It is commonly accepted by most researchers that a diagonal tension crack plays a predominant role in the failure mode of these beams, but the failure mechanism of these members is still debatable. In this paper, it was assumed that diagonal tension failure was triggered by the concrete cover splitting due to the dowel action at the initial location of diagonal tension cracks, which propagate from flexural cracks. When concrete cover splitting occurred, the shape of a diagonal tension crack was simultaneously developed, which can be determined from the principal tensile stress trajectory. This fictitious crack rotates onto the crack tip with load increase. During the rotation, all forces acting on the crack (i.e, dowel force of longitudinal bars, vertical component of concrete tensile force, shear force by aggregate interlock, shear force in compression zone) were calculated by considering the kinematical conditions such as crack width or sliding. These forces except for the shear force in the compression zone were uncoupled with respect to crack width and sliding by the proposed constitutive relations for friction along the crack. Uncoupling the shear forces along the crack was aimed at distinguishing each force from the total shear force and clarifying the failure mechanism of RC slender beams without stirrups. In addition, a proposed method deriving the dowel force of longitudinal bars made it possible to predict the secondary shear failure. The proposed model can be used to predict not only the entire behavior of point-loaded RC slender shear beams, but also the ultimate shear strength. The experiments used to validate the proposed model are reported in a companion paper.