• Title/Summary/Keyword: mechanics

Search Result 11,240, Processing Time 0.038 seconds

Hierarchical Circuit Visualization for Large-Scale Quantum Computing (대규모 양자컴퓨팅 회로에 대한 계층적 시각화 기법)

  • Kim, JuHwan;Choi, Byung-Soo;Jo, Dongsik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.611-613
    • /
    • 2021
  • Recently, research and development of quantum computers, which exceed the limits of classical computers, have been actively carried out in various fields. Quantum computers, which use quantum mechanics principles in a way different from the electrical signal processing of classical computers, have various quantum mechanical phenomena such as quantum superposition and quantum entanglement. It goes through a very complicated calculation process compared to the calculation of a classical computer for performing an operation using its characteristics. In order to utilize each element efficiently and accurately, it is necessary to visualize the data before driving the actual quantum computer and perform error verification, optimization, reliability, and verification. However, when visualizing all the data of various elements configured inside the quantum computer, it is difficult to intuitively grasp the necessary data, so it is necessary to visualize the data selectively. In this paper, we visualize the data of various elements that make up a quantum computer, and hierarchically visualize the internal circuit components of a quantum computer that are complicatedly configured so that the data can be observed and utilized intuitively.

  • PDF

Suspension of Sediment over Swash Zone (Swash대역에서의 해빈표사 부유거동에 관한 연구)

  • Cho, Yong Jun;Kim, Kwon Soo;Ryu, Ha Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.95-109
    • /
    • 2008
  • We numerically analyzed the nonlinear shoaling, a plunging breaker and its accompanying energetic suspension of sediment at a bed, and a redistribution of suspended sediments by a down rush of preceding waves and the following plunger using SPH with a Gaussian kernel function, Lagrangian Dynamic Smagorinsky model (LDS), Van Rijn's pick up function. In that process, we came to the conclusion that the conventional model for the tractive force at a bottom like a quadratic law can not accurately describe the rapidly accelerating flow over a swash zone, and propose new methodology to accurately estimate the bottom tractive force. Using newly proposed wave model in this study, we can successfully duplicate severely deformed water surface profile, free falling water particles, a queuing splash after the landing of water particles on the free surface and a wave finger due to the structured vortex on a rear side of wave crest (Narayanaswamy and Dalrymple, 2002), a circulation of suspended sediments over a swash zone, net transfer of sediments clouds suspended over a swash zone toward the offshore, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

A Study of Fatigue Damage Factor Evaluation for Railway Turnout Crossing using Qualitative Analysis & Field Test (현장측정 및 정성분석기법을 이용한 분기기 망간 크로싱의 피로손상도 평가에 관한 연구)

  • Park, Yong-Gul;Choi, Jung-Youl;Eum, Ki-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.881-893
    • /
    • 2008
  • The major objective of this study is to investigate the fatigue damage factor evaluation of immovability crossing for railway turnout by the field test and qualitative analysis. From the field test results of the servicing turnout crossing and qualitative analysis with frictional wear which section stiffness decreased, it was evaluated fatigue life of servicing turnout crossing. Most design practices have not taken advantage of the advanced theories in the modern fracture mechanics and finite element analysis due to complexity of analysis as well as the large quantity of vaguely defined parameters in actual designs. This paper considers fatigue problems in turnout crossing using effective analytical and design tools from the field of qualitative constraint reasoning. A set of software modules was developed for fatigue analysis and evaluation, which is easily applicable in engineering practices of designers. The techniques enable the use complex analysis formulations to tackle practical problems with uncertainties, and present the design outcome in two-dimensional design space solution. Appropriate engineering assumptions and judgments in carrying out these procedures, often the most difficult part for practicing engineers, can be partially produced by using qualitative reasoning to define the trends and ranges, interval constraint analysis to derive the controlling parameters, as well as design space to account for practical experience.

Free-vibration and buckling of Mindlin plates using SGN-FEM models and effects of parasitic shear in models performance

  • Leilson J. Araujo;Joao E. Abdalla Filho
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.283-296
    • /
    • 2023
  • Free-vibration and buckling analyses of plate problems are investigated with the aid of the strain gradient notation finite element method (SGN-FEM). As SGN-FEM employs physically interpretable polynomials in developing finite elements, parasitic shear sources, which are the cause of shear locking, can be precisely identified and subsequently eliminated. This allows two mutually complementary objectives to be defined in this work, namely, evaluate the efficiency of free-vibration and buckling results provided by corrected models, and study the severity of parasitic shear effects on plate models performance. Parasitic shear are flexural terms erroneously present in shear strain polynomials. It is reviewed here that six parasitic shear terms arise during the formulation of the four-node Mindlin plate element. Two parasitic shear terms have been identified in the in-plane shear strain polynomial while other two have been identified in each of the transverse shear strain polynomials. The element is corrected a-priori, i.e., during development, by simply removing the spurious terms from the shear strain polynomials. The computational implementation of the element in its two versions, namely, containing the parasitic shear terms (PS) and corrected for parasitic shear (SG), allows for assessments of the accuracy of results and of the deleterious effects of parasitic shear in free vibration and buckling analyses. This assessment of the parasitic shear effects is a novelty of this work. Validation of the SG model is done comparing its results with analytical results and results provided by other numerical procedures. Analyses are performed for square plates with different thickness-to-length ratios and boundary conditions. Results for thin plates provided by the PS model do not converge to the correct solutions, which indicates that parasitic shear must be eliminated. That is, analysts should not rely on refinement alone. For thick plates, PS model results can be considered acceptable as deleterious effects are really critical in thin plates. On the other hand, results provided by the SG model converge well for both thin and thick plates. The effectiveness of the SG model is established via high-accuracy results obtained in several examples. It is concluded that corrected SGN-FEM models are efficient alternatives for free-vibration and buckling analysis of Mindlin plate problems, and that precise elimination of parasitic shear is a requirement for sound analyses.

Case Study of Deep Geological Disposal Facility Design for High-level Radioactive Waste (스웨덴 고준위방사성폐기물 심층처분시설의 설계 사례 분석)

  • Juhyi Yim;Jae Hoon Jung;Seokwon Jeon;Ki-Il Song;Young Jin Shin
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.312-338
    • /
    • 2023
  • The underground disposal facility for spent nuclear fuel demands a specialized design, distinct from conventional practices, to ensure long-term thermal, mechanical, and hydraulic integrity, preventing the release of radioactive isotopes from high-temperature spent nuclear fuel. SKB has established design criteria for such facilities and executed practical design implementations for Forsmark. Moreover, in response to subsurface uncertainty, SKB has proposed an empirical approach involving monitoring and adaptive design modifications, alongside stepwise development. SKB has further introduced a unique support system, categorizing ground types and behaviors and aligning them with corresponding support types to confirm safety through comparative analyses against existing systems. POSIVA has pursued a comparable approach, developing a support system for Onkalo while accounting for distinct geological characteristics compared to Forsmark. This demonstrates the potential for domestic implementation of spent nuclear fuel disposal facility designs and the establishment of a support system adapted to national attributes.

Statistical Analysis of Geometric Parameters and Rock Conditions of Pick Cutters for Roadheaders (로드헤더용 픽커터의 형상변수와 암반조건에 대한 통계적 분석)

  • Soo-Ho Chang;Tae-Ho Kang;Chulho Lee;Soon-Wook Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.414-424
    • /
    • 2023
  • In this study, a total of 326 data on a variety of geometric parameters of pick cutters and the corresponding cuttable rock conditions were collected and built as a database. Statistical analysis of the database showed that there is a significant positive correlation between the parameters that define the geometry of a pick cutter, especially between the parameters related to the length of a pick cutter and the geometry of a tungsten carbide insert. The diameter of a pick cutter shaft was also strongly correlated with the geometry of the inserts. On the other hand, it was difficult to find a clear correlation between the parameters for the rock conditions defined by the four conditions and the geometric parameters of pick cutters, which may be due to the uncertainty of the rock mass and the fact that the application of a pick cutter is presented as a range rather than a numerical single value. However, the mean values of geometric parameters of pick cutters tend to increase as a rock mass becomes harder. However, the pick length parameters are found to decrease as a rock mass becomes harder, which may be a way to reduce the moments that can occur when using long pick cutters in a hard rock condition.

Standard Procedures and Field Application Case of Constant Pressure Injection Test for Evaluating Hydrogeological Characteristics in Deep Fractured Rock Aquifer (고심도 균열암반대수층 수리지질특성 평가를 위한 정압주입시험 조사절차 및 현장적용사례 연구)

  • Hangbok Lee;Chan Park;Eui-Seob Park;Yong-Bok Jung;Dae-Sung Cheon;SeongHo Bae;Hyung-Mok Kim;Ki Seog Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.348-372
    • /
    • 2023
  • In relation to the high-level radioactive waste disposal project in deep fractured rock aquifer environments, it is essential to evaluate hydrogeological characteristics for evaluating the suitability of the site and operational stability. Such subsurface hydrogeological data is obtained through in-situ tests using boreholes excavated at the target site. The accuracy and reliability of the investigation results are directly related to the selection of appropriate test methods, the performance of the investigation system, standardization of the investigation procedure. In this report, we introduce the detailed procedures for the representative test method, the constant pressure injection test (CPIT), which is used to determine the key hydrogeological parameters of the subsurface fractured rock aquifer, namely hydraulic conductivity and storativity. This report further refines the standard test method suggested by the KSRM in 2022 and includes practical field application case conducted in volcanic rock aquifers where this investigation procedure has been applied.

A Case Study on Predicting and Analyzing Inflow Sources of Underground Water in a Limestone Mine (석회석 광산 갱내수 유입원 예측분석 사례연구)

  • Minkyu Lee;Sunghyun Park;Hwicheol Ko;Yongsik Jeong;Seon-hee Heo
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.388-398
    • /
    • 2023
  • The changes in groundwater flow due to mining development act as a contributing factor to major issues such as ground subsidence, strength reduction and collapse. For the sustainable mining development, measures for dealing with fluctuations in seasonal underground water inflow, power losses, pump damage, and unexpected increases in inflow must be put in place. In this study, the aim is to identify the causes of underground seepage through the examination of hydrological connectivity between the study area and nearby limestone mine. A tracer tes for assessing subsurface connectivity has been planned. A variety of tracers, such as dyes and ions, were applied in lab test to select the optimal tracer material, and a hydrological model of the study area was implemented through field test. Finally, the hydrological connectivity between the external stream and underground water in the mine was analyzed.

Numerical Analysis of Fault Stability in Janggi Basin for Geological CO2 Storage (CO2 지중저장에 따른 장기분지 내 단층안정성 기초해석)

  • Jung-Wook Park;Hanna Kim;Hangbok Lee;Chan-Hee Park;Young Jae Shinn
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.399-413
    • /
    • 2023
  • The present study conducted a numerical modeling of CO2 injection at the Janggi Basin using the TOUGH-FLAC simulator, and examined the hydro-mechanical stability of the aquifer and the fault. Based on the site investigations and a 3D geological model of the target area, we simulated the injection of 32,850 tons of CO2 over a 3-year period. The analysis of CO2 plume with different values of the aquifer permeability revealed that assuming a permeability of 10-14 m2 the CO2 plume exhibited a radial flow and reached the fault after 2 years and 9 months. Conversely, a higher permeability of 10-13 m2 resulted in predominant westward flow along the reservoir, with negligible impact on the fault. The pressure changes around the injection well remained below 0.6 MPa over the period, and the influence on the hydro-mechanical stability of the reservoir and fault was found to be insignificant.

Application of Eddy Current Sensor for Measurement of TBM Disc Cutter Wear (TBM 디스크커터의 마모량 측정을 위한 와전류센서의 적용 연구)

  • Min-Sung Park;Min-Seok Ju;Jung-Joo Kim;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.534-546
    • /
    • 2023
  • If the disc cutter is excessively worn or damaged, it becomes incapable of rotating and efficiently cutting rockmass. Therefore, it is important to appropriately manage the replacement cycle of the disc cutter based on its degree of wear. In general, the replacement cycle is determined based on the results of manual inspection. However, the manual measurements has issues related to worker safety and may lead to inaccurate measurement results. For these reasons, some foreign countries are developing the real-time measurement system of disc cutter wear by using different sensors. The ultrasonic sensors, eddy current sensors, magnetic sensors, and others are utilized for measuring the wear amount of disc cutters. In this study, the applicability of eddy current sensors for real-time measurement of wear amount in TBM disc cutters was evaluated. The distance measurement accuracy of the eddy current sensor was assessed through laboratory tests. In particular, the accuracy of eddy-current sensor was evaluated in various environmental conditions within the cutterhead chamber. In addition, the measurement accuracy of the eddy current sensor was validated using a 17-inch disc cutter.