• Title/Summary/Keyword: mechanical transducer

Search Result 387, Processing Time 0.025 seconds

Design of piezoelectric micro-machined ultrasonic transducer for wideband ultasonic radiation in air (공기 중 광대역 초음파 방사용 압전 박막 기반 초소형 초음파 트랜스듀서의 설계)

  • Ahn, Hongmin;Jin, JaeHyeok;Moon, Wonkyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.2
    • /
    • pp.87-97
    • /
    • 2020
  • In this paper, the design of piezoelectric Micro-machined Ultrasonic Transducer (pMUT) for wideband ultrasonic radiation in air was investigated. One of the methods to achieve wide frequency bandwidth in single device is modeling the transducer to multi-resonance system. The new pMUT was designed as a multi-resonance system with the addition of a suitable acoustic structure to the front and back of a thin film structure. A new pMUT consisting of thin film parts, radiation parts, and packaging parts is designed with a Lumped Parameter Model (L.P.M). Finally, it was validated as a Finite Element Method (FEM) simulation. The final designed pMUT achieved a frequency band of 102 kHz ~ 132 kHz (-3 dB).

Equivalent Circuit Modelling of FFR Transducer Array for Sonar System Design (소나 시스템 설계를 위한 FFR 트랜스듀서 어레이의 등가회로 모델링)

  • Kim, In-Dong;Choi, Seung-Soo;Lee, Haksue;Lee, Seung Woo;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.629-635
    • /
    • 2017
  • Free-Flooded Ring (FFR) transducer array for use in Sonar system can be driven with large amplitude in a wide frequency band due to its structural characteristics, in which two resonances of a ring mode (1st radial mode) and an inner cavity vibration mode occur in a low frequency band. Since its sound wave generation characteristics are not influenced by the water pressure, the FFR transducer array is widely used in the deep sea. So FFR has been recognized as a low-frequency active sound source and has received much attention ever since. In order to utilize the FFR transducer array for SONAR systems in military and industrial applications, its equivalent electric circuit model is necessary especially to design the matching circuit between the driving power amplifier and the FFR transducer array. Thus this paper proposes the equivalent electric circuit model of FFR transducer array by using measured values of parameter, and suggest the improved method of parameter identification. Finally it verifies the effectiveness of the proposed circuit model of FFR transducer array by experimental measurements.

Optimal design of a concave annular array transducer to generate high intensity focused ultrasound (고강도 집속 초음파 발생용 오목한 환상형 배열 트랜스듀서의 최적설계)

  • Choi, Euna;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.452-465
    • /
    • 2016
  • In this study, the structure of a concave annular array transducer was optimized to generate high intensity focused ultrasound for medical therapeutic application. The transducer has a phased array structure composed of several concentric channels that have 40 mm as the radius of curvature. We derived theoretical equations to analyze the sound field of the transducer and verified the validity of the equations by comparing the results calculated by the equations with those from finite element analyses. We also checked the possibility of dynamic focusing at around the geometric focal point. Further, the level of a grating lobe occurring at an unwanted position in the transducer sound field was confirmed to be reducible through the relation between the number of channels and the frequency of the transducer. Hence, the structure of the transducer was optimized to place the main lobe within a specific range from the zenith while systematically reducing the level of the maximum sidelobe including the grating lobe. The designed structure showed the performance better than that targeted at all the focal points.

Suggestion of an experimental method for optimization of flange point of a bolt-clamped Langevin-type ultrasonic transducer (볼트 체결형 란주반 초음파 트랜스듀서의 프렌지 포인트 최적화를 위한 실험적 방법 제안)

  • Kim, Jungsoon;Kim, Haeun;Kim, Moojoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.270-277
    • /
    • 2021
  • In the power ultrasound fields, the flange position for fixing the transducer is an important factor influencing on electro-mechanical efficiency of the transducer. We suggested a practical method that can determine the installation position of the flange for different resonance modes of the bolt-clamped type Langevin ultrasonic transducer. A semicircular wedge-shaped jig was manufactured and moved along the lateral surface of the transducer. The vibration characteristics were examined after a constant pressure was applied to the semicircular wedge-shaped jig. By observing the change of the input admittance of the transducer depending on the position of the pressure application, the optimum position for the flange installation could be determined. The resonant modes of the transducer were calculated by a Mason's equivalent circuit, and the particle velocity distribution for each resonance mode was calculated by a transmission line model. Since the optimum positions determined from an experimental result show a good correspondence with the node positions of the vibration modes calculated by the transmission line model, the validity of the suggested method was verified.

Design and Fabrication of Multi-mode Wideband Tonpilz Transducers (다중모드 광대역 Tonpilz 트랜스듀서의 설계 및 제작)

  • Kim, Jinwook;Kim, Hoeyong;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.3
    • /
    • pp.191-198
    • /
    • 2013
  • In this paper, we designed a wideband Tonpilz transducer, and verified the validity of the design through experiments. The wide frequency bandwidth was achieved by coupling the fundamental longitudinal mode of the transducer with a flapping mode of the head mass. Structure of the Tonpilz transducer was optimized by means of the finite element method and genetic algorithm to achieve the widest fractional bandwidth under design constraints. The optimized structure showed a far wider -6 dB fractional bandwidth of transmitting responses than that of single mode transducers. For verification of the design result, we manufactured a transducer prototype of the designed structure and characterized its performance, which showed good agreement with the design results.

Design of electromagnetic type transducer to drive round window with high efficiency (고효율 전자기형 정원창 구동 트랜스듀서의 설계)

  • Lee, Jang-Woo;Kim, Dong-Wook;Kim, Myoung-Nam;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • Implantable middle ear hearing devices(IMEHDs) have being actively studied to overcome the problems of conventional hearing aids. Vibration transducer, an output devices of IMEHDs, is attached on the ossicular chain and transmits mechanical vibration to cochlea. This approach allows us to hear more clear sound because mechanical vibration is effective to transfer high frequency acoustics, but occurs some problems such as fatigue accumulation to ossicular chian and reduction of vibration displacement caused by mass loading effect. Recently, many studies for the round window stimulation are announced, because it does not cause such problems. It have been studied by older transducers designed for attaching on ossicular chain. In this paper, we proposed a new electromagnetic transducer which consists of two magnets, three coils and a vibration membrane. The magnet assembly, magnet coupled in opposite direction, were placed in the center of three coils, and the optimum length of each coil generating maximum vibrational force was calculated by finite element analysis(FEA). The transducer was implemented as the calculated length of each coil, and measured vibration displacement. From the results, it is verified the vibration displacement can be improved by optimizing the length of coils.

A Study on Generating Characteristics of Circular Unimorph-Type Piezoelectric Transducer (원판형 유니몰프타입 압전 트랜스듀서의 발전특성 연구)

  • Park, Choong-Hyo;Kim, Jong-Wook;Jeong, Seong-Su;Chong, Hyon-Ho;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.1
    • /
    • pp.22-26
    • /
    • 2011
  • On this paper, a circular unimorph-type piezoelectric transducer was proposed and studied. The transducer was fabricated by attaching a circular-shaped PZT ceramic to a circular plate of brass and output characteristics of the fabricated transducer were then analyzed and measured by changing driving points where the mechanical vibrations were applied. Two conditions depending on the location of vibration were respectively defined as a center forced model and an edge forced model. The resonance frequency and output voltage of the models were simulated by using ANSYS, a FEM(finite element method) program. Based on the results of the analyses, the vibration experiment was conducted and the output characteristics then measured through measurement equipment. As a result, the maximum output characteristics of two models were respectively generated at each resonance frequency and the resonance frequency of the center forced model was lower than the edge forced model.

Aluminum Wire Bonding by Longitudinal Vibration of Ultrasonic Transducer (초음파 트랜스듀서의 종진동을 이용한 알루미늄 와이어 용접)

  • Lee, G.B.;Kim, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.11
    • /
    • pp.38-45
    • /
    • 1996
  • In recent years, ultrasonic has been widely applied in measurement and industrial fields and its application range has been expanded as a result of continuous research and development. Wire Bonding Machine, an instrument fabricating semi-conductor, makes use of ultrasonic bonding method. Specially, the method utilizes the longitudinal vibration of ultrasonic transducer composed of piezoelectric vibrator and horn. This work investigates the design conditions affecting the dynamic characteristics through the theretical and experimental analysis. It conducts separately the system identification of piezoelectric vibrator in time domain and the modal analysis of horn in frequency domain. The integrated modeling is conducted via a combbination of dynamic identification of piezoelectric vibrator and theroretical analysis of horn. Then comparison is made for theroretical and experimental results of the dynamic characteristics of the ultrasonic transducer comprised of piezoelectric vibrator and horn. Form the results of the comparison we develop the design technique of ultrasonic transducer using dynamic characteristics analysis and propose the possibility of ultrasonic bonding considering the optimal conditions for the longitudinal vibration of ultrasonic transducer and other conditions.

  • PDF

Comparative analysis of the acoustic characteristics of different types of cymbal transducers (심벌 트랜스듀서의 종류별 음향 특성 비교 분석)

  • Choi, Youji;Shim, Hayeong;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.256-265
    • /
    • 2019
  • Several types of cymbal transducers used for underwater detection have been studied. Representative types are Moonie, convex cymbal, and concave cymbal transducers. In this study, we analyzed the characteristics of these three types of transducers for underwater broadband projectors and compared them together. First, the influence of structural variables on the acoustic characteristics of the transducers was analyzed. Based on this, we derived the structure of each transducer type to have a specific center frequency and the maximum bandwidth. As a result of comparing the performance of the optimized transducers, the convex cymbal transducer turned out to be best in terms of both broad bandwidth and high power.

Design of Ultrasonic Tool Horn for Wire Wedge Bonding (와이어 본딩용 초음파 공구혼 설계에 관한 연구)

  • Lee, Bong-Gu;Oh, Myung-Seok;Ma, Jeong-Beom
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.717-722
    • /
    • 2013
  • In this study, we investigated the design of a wire wedge bonding ultrasonic tool horn using finite element method (FEM) simulations. The proposed method is based on an initial design estimate obtained by FEM analysis. An ultrasonic excitation causes various vibrations of a transducer horn and capillary. A simulated ultrasonic transducer horn and resonator are then built and characterized experimentally using a laser interferometer and electrical impedance analyzer. The vibration characteristics and resonance frequencies close to the exciting frequency are identified using ANSYS. FEM analysis is developed to predict the resonance frequency of the ultrasonic horn and use it in the optimal design of an ultrasonic horn mode shape.