• 제목/요약/키워드: mechanical support

검색결과 1,393건 처리시간 0.03초

펌프 맥동하중에 대한 노심지지배럴 집합체의 음향-구조 연성해석 (Acoustic Structure Interaction Analysis of the Core Support Barrel for Pump Pulsation Loads)

  • 이장원;문종성;김정규;성기광;김현민
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제5권2호
    • /
    • pp.127-134
    • /
    • 2017
  • 원자로내부구조물은 다양한 진동하중조건에서 안전성과 건전성을 유지해야한다. 그러므로 미국원자력규제 위원회는 펌프 압력 맥동에 의한 진동을 포함하여 음향으로 유발되는 진동을 평가하기 위한 규제지침서 1.20을 제시하고 있다. 본 논문은 음향-구조 연성해석 기법을 사용하여 펌프 맥동 가진으로 인한 해석을 위해 노심지지배럴 주변의 유체와 구조의 연성을 고려하여 해석하는 방법론을 제안하였다. 해석결과는 미국 Palo Verde 1호기 종합진동평가 프로그램 발전소 시험결과와 잘 일치한다. 따라서 제안된 해석 방법론은 펌프 압력맥동에 대한 노심지지배럴의 구조응답을 평가하기 위한 효과적 방법으로 판단된다.

A new dynamic construction procedure for deep weak rock tunnels considering pre-reinforcement and flexible primary support

  • Jian Zhou;Mingjie Ma;Luheng Li;Yang Ding;Xinan Yang
    • Geomechanics and Engineering
    • /
    • 제38권3호
    • /
    • pp.319-334
    • /
    • 2024
  • The current theories on the interaction between surrounding rock and support in deep-buried tunnels do not consider the form of pre-reinforcement support or the flexibility of primary support, leading to a discrepancy between theoretical solutions and practical applications. To address this gap, a comprehensive mechanical model of the tunnel with pre-reinforced rock was established in this study. The equations for internal stress, displacement, and the radius of the plastic zone in the surrounding rock were derived. By understanding the interaction mechanism between flexible support and surrounding rock, the three-dimensional construction analysis solution of the tunnel could be corrected. The validity of the proposed model was verified through numerical simulations. The results indicate that the reduction of pre-deformation significantly influences the final support pressure. The pre-reinforcement support zone primarily inhibits pre-deformation, thereby reducing the support pressure. The support pressure mainly affects the accelerated and uniform movement stage of the surrounding rock. The generation of support pressure is linked to the deformation of the surrounding rock during the accelerated movement stage. Furthermore, the strength of the pre-reinforcement zone of the surrounding rock and the strength of the shotcrete have opposite effects on the support pressure. The parameters of the pre-reinforcement zones and support materials can be optimized to achieve a balance between surrounding rock deformation, support pressure, cost, and safety. Overall, this study provides valuable insights for predicting the deformation of surrounding rock and support pressure during the dynamic construction of deep-buried weak rock tunnels. These findings can guide engineers in improving the construction process, ensuring better safety and cost-effectiveness.

직류용 FRP 지지애자 개발 및 현장설치 적응시험 (The Development and Field Test of DC FRP Support Insulator Prototype)

  • 심재석;김윤식;이기승
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1979-1983
    • /
    • 2011
  • FRP(Fiber Reinforced Plastic) support insulators for DC(direct current) were developed and their electrical and mechanical characteristics were investigated. Electrical tests were carried out to measure flashover voltages under common use frequency condition. Tensile and bending tests were performed for the mechanical characteristics. The test results showed that FRP support insulators have superior voltage resistances and strengths to porcelain insulators. Field test also is carried out to measure adaptation and to compensate the defect. The test result showed that a new product has no defect in electrical and mechanical.

  • PDF

강진 대비 굽힘 강성 향상을 위한 밸브지지대 형상 설계 (Valve Support Design for Improved Flexural Rigidity Against Strong Earthquake)

  • 김대진;김형은;석창성
    • 한국안전학회지
    • /
    • 제32권6호
    • /
    • pp.75-80
    • /
    • 2017
  • In this study, seismic performance of various types of valve supports in terms of flexural rigidity are evaluated by FEA using equivalent static load method. Flexural rigidity of the existing two types of valve supports can be effectively improved by simply adding one more bracket on the other side of support. New types of polygonal valve supports with a concept of fully stressed beam theory are suggested and it is verified that the new supports are rigid enough to withstand stronger earthquake which we should be prepared for.

Decision Support Tool for Evaluating Push and Pull Strategies in the Flow Shop with a Bottleneck Resource

  • Chiadamrong, N.;Techalert, T.;Pichalai, A.
    • Industrial Engineering and Management Systems
    • /
    • 제6권1호
    • /
    • pp.83-93
    • /
    • 2007
  • This paper gives an attempt to build a decision support tool linked with a simulation software called ARENA for evaluating and comparing the performance of the push and pull material driven strategies operating in the flow shop environment with a bottleneck resource as the shop's constraint. To be fair for such evaluation, the comparison must be made fairly under the optimal setting of both systems' operating parameters. In this study, an optimal-seeking heuristic algorithm, Genetic Algorithm (GA), is employed to suggest a systems' best design based on the economic consideration, which is the profit generated from the system. Results from the study have revealed interesting outcomes, letting us know the strength and weakness of the push and pull mechanisms as well as the effect of each operating parameter to the overall system's financial performance.

Support Vector Regression을 이용한 서보 시스템의 기계적 상수 추정 (Mechanical Parameter Identification of Servo Systems using Robust Support Vector Regression)

  • 조경래;석줄기;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(2)
    • /
    • pp.738-741
    • /
    • 2004
  • The overall performance of AC servo system is greatly affected by the uncertainties of unpredictable mechanical parameter variations and external load disturbances. Therefore, to compensate this problem, it is necessary to know different parameters and load disturbances subjected to position/speed control. This paper proposes an online identification method of mechanical parameters/load disturbances for AC servo system using Support Vector Regression (SVR). The proposed methodology advocates analytic parameter regression directly from the training data, rather than adaptive controller and observer approaches commonly used in motion control applications. The experimental results demonstrate that the proposed SVR algorithm is appropriate for control of unknown servo systems even with large measurement noise.

  • PDF

Vibration of elastically supported bidirectional functionally graded sandwich Timoshenko beams on an elastic foundation

  • Wei-Ren Chen;Liu-Ho Chiu;Chien-Hung Lin
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.197-209
    • /
    • 2024
  • The vibration of elastically supported bidirectional functionally graded (BDFG) sandwich beams on an elastic foundation is investigated. The sandwich structure is composed of upper and lower layers of BDFG material and the core layer of isotropic material. Material properties of upper and lower layers are assumed to vary continuously along the length and thickness of the beam with a power-law function. Hamilton's principle is used to deduce the vibration equations of motion of the sandwich Timoshenko beam. Then, the partial differential equation of motion is spatially discretized into a time-varying ordinary differential equation in terms of Chebyshev differential matrices. The eigenvalue equation associated with the free vibration is formulated to study the influence of various slenderness ratios, material gradient indexes, thickness ratios, foundation and support spring constants on the vibration frequency of BDFG sandwich beams. The present method can provide researchers with deep insight into the impact of various geometric, material, foundation and support parameters on the vibration behavior of BDFG sandwich beam structures.

유도초음파를 이용한 복수기 튜브지지판 영역에서의 결함검출기법 (A Technique for Defect Detection of Condenser Tube in Support Plate Region using Guided Wave)

  • 김용권;박익근;박세준;안연식;길두송
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.36-41
    • /
    • 2012
  • General condensers consist of many tubes supported by tube sheets and support plates to prevent the deflection of the condenser tubes. When a fluid at high pressure and temperature runs over the tubes for the purpose of transferring heat from one medium to another, the tubes vibrate and their surface comes into contact with the support plates. This vibration causes damage to the tubes, such as cracks and wear. We propose an ultrasonic guided wave technique to detect the above problems in the support plate region. In the proposed method, the ultrasonic guided wave mode, L(0,1), is excited using an internal transducer probe from a single position at the end of the tube. In this paper, we present a preliminary experimental verification using a super stainless tube and show that the defects can be discriminated from the support signals in the support region.

개량형 9Cr-1Mo 강의 열화도 평가를 위한 기계적 성질 및 초음파 특성 분석 (Analysis of Mechanical and Ultrasonic Properties for the Evaluation of Material Degradation in Modified 9Cr-1Mo Steel)

  • 현양기;원순호;이상훈;손영호;이재훈;김인배
    • 열처리공학회지
    • /
    • 제23권4호
    • /
    • pp.198-204
    • /
    • 2010
  • Modified 9Cr-1Mo steels possess excellent high-temperature mechanical properties and are widely used in energy conversion industries. However, in-service materials degradation, such as softening, carbide-induced embrittlement, temper embrittlement, etc., can take place during long-term operation. Evolution of microstructure due to service exposure to high temperature has a strong effect on the performance of heat resistant steels. In case of modified 9Cr-1Mo steels, precipitation of $Fe_2Mo$-type laves phases and coarsening of $M_{23}C_6$-type carbides are the primary cause of degradation of mechanical properties such as toughness, hardness, tensile strength and creep resistance. This study was aimed at finding reliable parameter for assessing the integrity of modified 9Cr-1Mo steels. Characteristic parameters were attained between mechanical and ultrasonic properties.

Short-Term Wind Speed Forecast Based on Least Squares Support Vector Machine

  • Wang, Yanling;Zhou, Xing;Liang, Likai;Zhang, Mingjun;Zhang, Qiang;Niu, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1385-1397
    • /
    • 2018
  • There are many factors that affect the wind speed. In addition, the randomness of wind speed also leads to low prediction accuracy for wind speed. According to this situation, this paper constructs the short-time forecasting model based on the least squares support vector machines (LSSVM) to forecast the wind speed. The basis of the model used in this paper is support vector regression (SVR), which is used to calculate the regression relationships between the historical data and forecasting data of wind speed. In order to improve the forecast precision, historical data is clustered by cluster analysis so that the historical data whose changing trend is similar with the forecasting data can be filtered out. The filtered historical data is used as the training samples for SVR and the parameters would be optimized by particle swarm optimization (PSO). The forecasting model is tested by actual data and the forecast precision is more accurate than the industry standards. The results prove the feasibility and reliability of the model.