• Title/Summary/Keyword: mechanical property

Search Result 3,517, Processing Time 0.036 seconds

Interaction Effect of Mechanical Properties and Color Characteristics on the Subjective Touch and Color Sensation of Silk Fabrics (견직물의 역학적 성질과 색채 특성이 촉감각과 색채감각에 미치는 상호작용효과)

  • Lee, An-Rye;Yi, Eun-Jou
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.3
    • /
    • pp.360-370
    • /
    • 2012
  • This study investigates the interaction effects of mechanical property-based clusters and colorimetric tones on the subjective touch and color sensation of fabrics when sight and touch were simultaneously provided to humans. Each of six different silk fabrics was colored by digital textile printing to have three tones (pale, vivid, and grayish) and its mechanical properties were measured by a Kawabata Evaluation System (KES). Touch and color sensation were identified to be primarily influenced by mechanical property-based clusters and tones, respectively. In touch, 'smooth', 'warm', 'heavy', and 'soft' were found to be affected by interactive effects of mechanical property-based clusters and colorimetric tone so that the pale tone tended to make differences smaller among the clusters for the touch sensation, while the grayish tone seemed to contribute to larger differences of 'heavy'. However, an interaction effect was not found in the color sensation with touch even though the color sensation was also influenced by mechanical property-based clusters.

The effect of neutron irradiation on hydride reorientation and mechanical property degradation of zirconium alloy cladding

  • Jang, Ki-Nam;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1472-1482
    • /
    • 2017
  • Zirconium alloy cladding tube specimens were irradiated at $380^{\circ}C$ up to a fast neutron fluence of $7.5{\times}10^{24}n/m^2$ in a research reactor to investigate the effect of neutron irradiation on hydride reorientation and mechanical property degradation. Cool-down tests from $400^{\circ}C$ to $200^{\circ}C$ under 150 MPa tensile hoop stress were performed. These tests indicate that the irradiated specimens generated a smaller radial hydride fraction than did the unirradiated specimens and that higher hydrogen content generated a smaller radial hydride fraction. The irradiated specimens of 500 ppm-H showed smaller ultimate tensile strength and plastic strain than those characteristics of the 250 ppm-H specimens. This mechanical property degradation caused by neutron irradiation can be explained by tensile hoop stress-induced microcrack formation on the hydrides in the irradiation-damaged matrix and subsequent microcrack propagation along the hydrides and/or through the matrix.

Equivalent Mechanical Property for Stress Analysis on Lined Pipe (Lined Pipe의 응력해석을 위한 등가 물성치 계산)

  • Choe, Jae-Seung;Jeong, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.445-451
    • /
    • 2002
  • The refractory-lined pipe is used to protect the system from high-temperature of the internal flow. The property of the refractory has an effect upon the stress analysis for fluid catalytic cracking(FCC) unit piping design. The equivalent elastic modulus and density considering steel and refractory must be applied in the stress analysis of the system. In the research, the theoretical method to obtain the value of the equivalent property is introduced and then the parametric analysis is carried out to understand the characteristic of the material properties, and the stress analysis is performed with reactor, the part of FCC unit.

Sintering Behavior of the Net-shaped Fe-8wt%Ni Nanoalloy Powder and Related Mechanical Property

  • Cha, Berm-Ha;Kang, Yun-Sung;Lee, Sung-Ho;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.501-502
    • /
    • 2006
  • The present investigation has been performed on full densification behavior and mechanical property of the powder injection molded Fe-8wt%Ni nanoalloy powder. The net shaping process of the nanopowder was conducted by powder injection molding (PIM) process. The key-process for fabricating fully densified net-shaped nanopowder by pressureless sintering is an optimal control of agglomerate size of nanopowder. Enhanced mechanical property of PIMed Fe-Ni nanopowder is explained by grain refinement and microstructural uniformity.

  • PDF

Preparation and Characteristics of High Voltage Liquid Silicone Rubber by Modified Cross-linking Agent

  • Jung, Se-Young;Kim, Byung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.9-15
    • /
    • 2009
  • There is a growing demand for a high voltage silicone rubber composite with high mechanical property and high electrical property. The effect of modified cross-linking agent on the mechanical, electrical properties, and short-circuit test performance of silicone rubber insulators have been investigated. To use base polymer, the various silicone polymers were prepared by the equilibrium polymerization. Aluminum trihydrate surface was treated by vinyl silane. Liquid silicone rubber nanocomposite was prepared from the compounding of VPMPS, HPDMS, catalyst, and alumina trihydrate modified with 1,3,5-trivinyl-l,3,5-trimethylcyclotrisiloxane. The mechanical property and electrical property for insulation materials were measured, indicating the high tensile strength and the good short-circuit property.

Study on fatigue life and mechanical properties of BRBs with viscoelastic filler

  • Xu, Zhao-Dong;Dai, Jun;Jiang, Qian-Wei
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.139-150
    • /
    • 2018
  • In this paper, two kinds of buckling restrained braces (BRBs) are designed to improve the mechanical properties and fatigue life, the reserved gap and viscoelastic filler with high energy dissipation capacity are employed as the sliding element, respectively. The fatigue life of BRBs considering the effect of sliding element is predicted based on Manson-Coffin model. The property tests under different displacement amplitudes are carried out to evaluate the mechanical properties and fatigue life of BRBs. At last, the finite element analysis is performed to study the effects of the gap and viscoelastic filler on mechanical properties BRBs. Experimental and simulation results indicate that BRB employed with viscoelastic filler has a higher fatigue life and more stable mechanical property compared to BRB employed with gap, and the smaller reserved gap can more effectively improve the energy dissipation capacity of BRB.

Mechanical Properties of PPLP Material at Cryogenic Temperature

  • Gorospe, Alking B.;Shin, Hyung-Seop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.16-19
    • /
    • 2012
  • In power cables as one of the important power applications adopting HTS tapes, a good insulation should be kept at its optimum performance. As an insulation material for superconducting device applications, polypropylene laminated paper (PPLP) is now widely used instead of the conventional Kraft paper. In addition to its dielectric property, the insulation material should also possess superior mechanical property at cryogenic temperatures and operability that is necessary for the insulation winding process. This study aims to evaluate the mechanical property of the PPLP material at ambient and cryogenic temperatures. At cryogenic temperature, the failure stress of PPLP increased significantly as compared with that at ambient temperature. The failure stress at both temperatures depended upon the sample orientation to the load application.

Effects of Al, Mn and Si Contents on Spatter, Fume, Microstructure and Mechanical Property with 490MPa Grade Flux Core Wire (490MPa급 플럭스코어드 와이어의 스패터, 흄, 미세조직 및 기계적 성질에 미치는 Al, Mn, Si의 영향)

  • Kim, Min-Chul;Jung, Won-Jung;Lee, Bong-Keun;Kong, Jong-Pan;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.60-65
    • /
    • 2010
  • This paper is concerned with effects of Al, Mn and Si contents on spatter, fume, microstructure and mechanical property with 490MPa Grade Flux Core Wire(FCW). Ten kinds of FCW were fabricated by varying Mn, Si and Al contents and each FCW was weld for check the amount of spatter and fume generations, microstructures and mechanical property. Amount of spatter and fume generations was decreased with the increasing Si contents and decreasing by Al contents in FCW. And, their microstructure of weld metal were changed by Mn, Al and Si contents in FCW. With increasing of Al and Si, acicular ferrite was fine and volume fraction of acicula ferrite was increased. Thereby leading to improvement of Charpy impact property and strength.

Effects of Reactive Gas Addition on the Mechanical Property and Water Permeability of IZO Films Deposited by DC Sputtering for Application to Flexible OLED (DC 마그네트론 스퍼터로 증착한 flexible OLED용 IZO 박막의 기계적 특성과 투습특성에 미치는 반응성 가스 첨가의 효과)

  • Cheon, Ko-Eun;Lee, Dong-Yeop;Cho, Young-Rae;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.245-249
    • /
    • 2007
  • Amorphous IZO films were deposited on PET substrate by DC magnetron sputtering without substrate heating. In order to investigate effect of reactive gas addition on film properties, 0.2-0.4% of $H_2$ or $O_2$ gas was introduced during the deposition. Deposited IZO films were evaluated with mechanical property, electrical property, and water permeability. In the case of $H_2$ gas addition, mechanical property showed clear degradation compared to $O_2$ gas. In the case of $O_2$ gas, water permeability of the IZO film was increased compared to $H_2$ gas which could be attributed to the low adhesion of the film caused by bombardment of high energy negative oxygen ion. As a result, it is confirmed that water permeability of the film could be strongly affected by adhesion of the film.