• 제목/요약/키워드: mechanical properties at high temperature

검색결과 1,233건 처리시간 0.033초

고내열 페라이트계 스테인레스 주강의 고온인장특성 평가 (High Temperature Tensile Properties of Heat-resistant Cast Ferritic Stainless Steels)

  • 정현경;이동근
    • 열처리공학회지
    • /
    • 제34권1호
    • /
    • pp.10-16
    • /
    • 2021
  • Exhaust manifold is a very important component that is directly connected to air environment pollution and that requires strict mechanical properties such as high temperature fatigue and oxidation. Among stainless steels, the ferritic stainless steel with body-centered cubic structure shows excellent resistance of stress-corrosion cracking, ferromagnetic at room temperature, very excellent cold workability and may not be enhanced by heat treatment. The microstructural characteristics of four cast ferritic stainless steels which are high heat-resistant materials, were analyzed. By comparing and evaluating the mechanical properties at room temperature and high temperature in a range of 400℃~800℃, a database was established to control and predict the required properties and the mechanical properties of the final product. The precipitates of cast ferritic stainless steels were analyzed and the high-temperature deformation characteristics were evaluated by comparative analysis of hardness and tensile characteristics of four steels at room temperature and from 400℃ to 800℃.

극미세 점 구조체 제작을 위한 열간나노압입공정에서 평판형 폴리머소재의 기계적 특성 평가 (Evaluation of Mechanical Characteristic of Plate-Type Polymer in Thermal-Nanoindentation Process for Hyperfine Pit Structure Fabrication)

  • 이은경;이상매;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.108-111
    • /
    • 2007
  • It's important to measure quantitative properties about thermal-nano variation conduct of polymer for producing high quality components using NIL process. NanoScale indents can be used ad cells for molecular electronics and drug deliver, slots for integration into nanodevices, and defects for tailoring the structure and properties. In this study, it's to evaluate mechanical characteristic of polymer such as PMMA and PC at high temperature for manufacture of nano/micro size of polymer using indenter at high temperature. At high temperature mechanical properties of polymer have extreme variation. Because heating the polymer, it becomes softer than room temperature. In this case it is especially important to study for mechanical properties of polymer at high temperature.

  • PDF

용접한 건축구조용 강재의 고온 시 기계적 특성에 관한 연구 (A Study on the Mechanical Properties of Structural Steels by Welding at High Temperature)

  • 조범연;지남용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 추계 학술논문 발표대회
    • /
    • pp.161-164
    • /
    • 2009
  • This research is to show the mechanical properties of structural steels by welding at high temperature. Welding parts are divided with weld metal and HAZ(Heat Affected Zone). HAZ is formed by interval from welding heat source and heating and cooling rates. Then, the change of both microstructure and mechanical properties occurs. Discontinuity of mechanical and chemical property at HAZ is the cause of safety decrease of structure. At this point, in this research, tensile tests at high temperature with test pieces of base metal and weld metal of SS400 and SM490 are accomplished. From the results, the mechanical properties of both SS400 and SM490 are standardized without welding or non-welding.

  • PDF

인장 및 압축실험을 통한 마그네슘 합금의 고온 물성 평가 (Estimation of Mechanical Properties of Mg Alloy at High Temperature by Tension and Compression Tests)

  • 오세웅;추동균;이준희;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.69-72
    • /
    • 2005
  • The crystal structure of magnesium is hexagonal close-packed (HCP), so its formability is poor at room temperature. But formability is improved in high temperature with increasing of the slip planes. Purpose of this paper is to know about the mechanical properties of magnesium alloy (AZ31B), before warm and hot forming process. The mechanical properties were defined by the tension and compression tests in various temperature and strain-rate. As the temperature is increased, yield${\cdot}$ultimate strength, K-value, work hardening exponent (n) and anisotropy factor (R) are decreased. But strain rate sensitivity (m) is increased. As strain-rate increased, yield${\cdot}$ultimate strength, K-value, and work hardening exponent (n) are increased. Also, microstructures of grains fine away at high strain-rate. These results will be used in simulations and manufacturing factor for warm and hot forming process.

  • PDF

Investigation on Mechanical Property and Adhesion of Oxide Films Formed on Ni and Ni-Co Alloy in Room and High Temperature Environments

  • Oka, Yoshinori I.;Watanabe, Hisanobu
    • Corrosion Science and Technology
    • /
    • 제7권3호
    • /
    • pp.145-151
    • /
    • 2008
  • Material degradation such as high temperature oxidation of metallic material is a severe problem in energy generation systems or manufacturing industries. The metallic materials are oxidized to form oxide films in high temperature environments. The oxide films act as diffusion barriers of oxygen and metal ions and thereafter decrease oxidation rates of metals. The metal oxidation is, however, accelerated by mechanical fracture and spalling of the oxide films caused by thermal stresses by repetition of temperature change, vibration and by the impact of solid particles. It is therefore very important to investigate mechanical properties and adhesion of oxide films in high temperature environments, as well as the properties in a room temperature environment. The oxidation tests were conducted for Ni and Ni-Co alloy under high temperature corrosive environments. The hardness distributions against the indentation depth from the top surface were examined at room temperature. Dynamic indentation tests were performed on Ni oxide films formed on Ni surfaces at room and high temperature to observe fractures or cracks generated around impact craters. As a result, it was found that the mechanical property as hardness of the oxide films were different between Ni and Ni-Co alloy, and between room and high temperatures, and that the adhesion of Ni oxide films was relatively stronger than that of Co oxide films.

고온 및 하중에 따른 섬유혼입 콘크리트의 잔존역학적 특성에 관한 연구 (A Study on the Residual Mechanical Properties of Fiber Mixed Concrete with High Temperature and Load)

  • 윤대기;김규용;최경철;이태규;구경모;김홍섭
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.119-120
    • /
    • 2011
  • Recently, the effects of high temperature and fiber content on the residual mechnical properties of high-strength concrete were experimentally investigated. In this paper, residual mechanical properties of concrete with water to cement (w/c) ratios of 55%, 42% and 32% exposed to high temperature are compared with those obtained in fiber reinforced concretes of similar characteristics with the ranging of 0,05% to 0,20% polypropylene (PP) fibers by volume of concrete, and considered factors include pre-load levels (20% and 40% of the maximum load at room temperature). Outbreak time and water contents were tested and were determined the compressive strength. In the result, it is showed that to prevent the explosive spalling of 50MPa grade concretes exposed to high temperature need more than 0.05Vol.% PP fibers. Also, the cross-sectional area of PP fiber can influence on the residual mechanical properties and the spalling tendency of fiber reinforced concrete exposed to high temperature. Especially, the external loading increases not only the residual mechanical properties of concrete but also the risk of spalling and the brittle tendency.

  • PDF

PP, NY섬유를 혼입한 150MPa 콘크리트의 고온역학적 특성 (Evaluation on High-Temperature Mechanical Properties of 150MPa Concrete Mixed with PP and NY Fiber)

  • 백재욱;김규용;윤민호;황의철;손민재;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.5-6
    • /
    • 2017
  • Ultra high-strength concrete can prevent spalling by mixed ratio of PP and NY fiber. However, there is a lack of research on the deterioration of strength due to changes in mechanical properties after spalling prevention. In this study, the effect of high temperature on the mechanical properties of 150MPa concrete mixed with PP and NY fiber was evaluated. As a result, mixing PP and NY fiber is judge to be little effect on the mechanical properties of the 150MPa concrete at high temperature.

  • PDF

Ag첨가 마그네슘 합금의 이중열처리에 따른 미세조직 및 기계적 특성변화 (Effect of Double Aging on Microstructure and Mechanical Properties of Ag Added magnesium Alloys)

  • 이병덕;백의현;장경수;한정환;손현택
    • 대한금속재료학회지
    • /
    • 제49권6호
    • /
    • pp.440-447
    • /
    • 2011
  • To improving the mechanical properties of Mg alloys at high temperature, we investigated the mechanical properties at high temperature and the change of microstructure of Mg-6 wt%Zn-0.4 wt%Mn and Mg-6 wt%Zn-0.4 wt%Mn-1 wt%Ag alloys on age treatment that have a stable MgZn phase at high temperature and $AgMg_4$ improving yield stress. In order to predict thermodynamic data of Mg alloys, a phase diagram and precipitation phase were calculated using a thermodynamic program, and it was confirmed that the MgZn and $AgMg_4$ phase existed as main precipitation in this alloys. The experimental data examined using DSC and XRD were comparable with the calculated data for reliability. In order to analysis the microstructure and precipitate phase during aging treatment, it was measured by SEM/EDS and TEM. Lastly, mechanical properties of the MgZn and $AgMg_4$ phase were measured by a tensile test at high temperature.

Numerical analysis of spalling of concrete cover at high temperature

  • Ozbolt, Josko;Periskic, Goran;Reinhardt, Hans-Wolf;Eligehausen, Rolf
    • Computers and Concrete
    • /
    • 제5권4호
    • /
    • pp.279-293
    • /
    • 2008
  • In the present paper a 3D thermo-hygro-mechanical model for concrete is used to study explosive spalling of concrete cover at high temperature. For a given boundary conditions the distribution of moisture, pore pressure, temperature, stresses and strains are calculated by employing a three-dimensional transient finite element analysis. The used thermo-hygro-mechanical model accounts for the interaction between hygral and thermal properties of concrete. Moreover, these properties are coupled with the mechanical properties of concrete, i.e., it is assumed that the mechanical properties (damage) have an effect on distribution of moisture (pore pressure) and temperature. Stresses in concrete are calculated by employing temperature dependent microplane model. To study explosive spalling of concrete cover, a 3D finite element analysis of a concrete slab, which was locally exposed to high temperature, is performed. It is shown that relatively high pore pressure in concrete can cause explosive spalling. The numerical results indicate that the governing parameter that controls spalling is permeability of concrete. It is also shown that possible buckling of a concrete layer in the spalling zone increases the risk for explosive spalling.

스테인리스강의 크리프 특성치와 파단시간과의 관계 (Relationship between Creep Characteristic Values and Rupture time in STS304 Stainless Steels)

  • 공유식;김선진;이배섭
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.228-233
    • /
    • 2004
  • The characteristics of the probability distribution for mechanical properties, e.g. tensile strength, reduction of area ana elongation, for STS304 stainless steel in elevated temperature were investigated from tensile test performed by constant cross head speea controls with 1mm/min, Recently, in order to clarify the strengthening mechanisms at high temperature, a new scheme to improve high temperature mechanical properties is desired. Therefore, the test ,technique development of high temperature creep behaviors for this material is very important. In this paper, the creep praperties and creep life prediction by Larson-Miller parameter method for STS304 stainless steel to be used for other high temperature components were presented at the elevated temperatures of 600, 650 and $700^{\circ}C$.

  • PDF