• Title/Summary/Keyword: mechanical milling method

Search Result 227, Processing Time 0.026 seconds

Effect of Processing Parameters in Surface Machining of Plastic Materials (플라스틱 소재의 표면가공 중 공정조건의 영향)

  • Han, Chang Mo;Lee, Bong-Kee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, a plastic surface end-milling was implemented to investigate the effects of processing parameters on surface quality. The end milling can be considered an efficient method for rapid prototyping of thermoplastic bio-systems since it exhibits several beneficial functions including short fabrication time and high dimensional accuracy. In this regard, putative biocompatible thermoplastic materials, such as PMMA, PET, and PC, were chosen as workpiece materials. Among the relevant processing parameters influencing the surface quality of the final product, depth of cut, feed rate, and spindle speed were considered in the present study. The roughness of surfaces machined under various conditions was measured to elucidate the effect of each parameter. We found that the cut depth was the most significant factor. Heat generation during machining also had a remarkable effect. From these investigations, an appropriate combination of processing conditions specific to each type of use and end-product could be found. This optimization can be useful in end-milling of thermoplastic bio-systems.

Prediction of Surface Topography by Dynamic Model in High Speed End Milling (고속 엔드밀 가공시 동적 모델에 의한 표면형상 예측)

  • Lee, Gi-Yong;Ha, Geon-Ho;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1681-1688
    • /
    • 2000
  • A dynamic model for the prediction of surface topography in high speed end milling process is developed. In this model the effect of tool runout, tool deflection and spindle vibration were taken in to account. An equivalent diameter of end mill is obtained by finite element method and tool deflection experiment. A modal parameter of machine tool is extracted by using frequency response function. The tool deflection, spindle vibration chip thickness and cutting force were calculated in dynamic cutting condition. The tooth pass is calculated at the current angular position for each point of contact between the tool and the workpiece. The new dynamic model for surface predition are compared with several investigated model. It is shown that new dynamic model is more effective to predict surface topography than other suggested models. In high speed end milling, the tool vibration has more effect on surface topography than the tool deflection.

Fabrication of Nanostructured Fe-Co powders by Mechanical Alloying and Their Magnetic Properties (기계적 합금화에 의한 나노구조 Fe-Co 합금분말의 제조 및 자성특성)

  • 정진영
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • A study was made on the fabrication of nanostructured Fe-Co powders by mechanical alloying and their magnetic properties. Microstrural development during the process of MA was inverstigated by means of X-ray diffraction, differential thermal analyzer, scanning electron microscopy and transmission electron microscopy. The magnetic properties of NS Fe-Co powders were evaluated through the measurements of the saturation magnetization $(M_s)$ as well as the coercivity $(H_c)$. The average grain size calculated from line braodening in XRD peak was about 10nm or less and confirmed by TEM. In this experiment, two different milling methods (cycle opertion and conventional milling) were used. Cycle operation had an advantage over the conventional milling method in that more refined powders can be obtained. Solid state alloying of the components was confirmed from both the change of the saturation magnetization and the change of lattice parameter with Co contentration. Maxium $M_s$ was obtained at the composition of 30at.%Co. Relatively high coercivities of 10~150e were obtained for the compositions investigated, and this seems to be due to the high amount of internal strain introduced during milling.

Prediction the Phase Transformation Time of Binary Alloy System by calculating the Input Energy of Mechanical Alloying (기계적 합금화 투입에너지 계산에 의한 이원합금계의 상변태 시간 예측)

  • Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.107-111
    • /
    • 2019
  • The activation energy to create a phase transformation or for the reaction to move to the next stage in the milling process can be calculated from the slop of the DSC plot, obtained at the various heating rates for mechanically activated Al-Ni alloy systems by using Kissinger's equation. The mechanically activated material has been called "the driven material" as it creates new phases or intermetallic compounds of AlNi in Al-Ni alloy systems. The reaction time for phase transformation by milling can be calculated using the activation energy obtained from the above mentioned method and from the real required energy. The real required energy (activation energy) could be calculated by subtracting the loss energy from the total input energy (calculated input energy from electric motor). The loss energy and real required energy divided by the reaction time are considered the "metabolic energy" and "the effective input energy", respectively. The milling time for phase transformation at other Al-Co alloy systems from the calculated data of Al-Ni systems can be predicted accordingly.

Effect on Mechanical Properties of 3Y-TZP; (I) Addition of Monoclinic Zirconia (3Y-TZP의 기계적 물성에 미치는 영향: (I) 단사정지르코니아의 첨가)

  • Yang, Seong-Koo;Bae, Kyung-Man;Cho, Bum-Rae;Kang, Jong-Bong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.6 s.277
    • /
    • pp.411-416
    • /
    • 2005
  • Y-TZP(Yttria-stabilized Tetragonal Zirconia Polycrystal) ceramics are of great interest as engineering and structural materials due to their excellent mechanical properties arising from transformation toughening, it is also reported that the 3Y-TZP($3 mol\%$ Yttria-stabilized Tetragonal Zirconia Polycrystal) has the best mechanical properties in Y-TZP ceramics. But to use widely for engineering and structural materials, it remains an important challenge to be able to improve its fracture toughness. In order to produce the 3Y- TZP ceramics showing much better mechanical properties, milling method adding monoclinic zirconia to 3Y-TZP was adopted and the resultant mechanical properties containing apparent density and fracture toughness were measured by using proper techniques. Experimental results showed that the 3Y-TZP specimen containing $33 wt\%$ of monoclinic zirconia, which was sintered at $1450^{\circ}C$, has the highest fracture toughness value of $11.38 MPa{\cdot}m^{1/2}$ which is three times higher than that of normal 3Y-TZP ceramics.

3D Cutting Machine of EPS Foam for Manufacturing Free-Formed Concrete Mold (비정형 콘크리트 거푸집 제작을 위한 EPS Foam의 3D 가공기계)

  • Seo, Junghwan;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.1
    • /
    • pp.35-39
    • /
    • 2017
  • We used a construction method using a CNC milling machine, where free-formed molds were made by cutting EPS (Expanded PolyStyrene) foam with the CNC machine, to build free-formed buildings. CNC milling is off-the-shelf technology that can easily cut EPS foam; however its production cost is too high and the time to manufacture an EPS mold is too long. This paper proposes a novel cutting machine with a fast and cost effective mechanism to manufacture EPS concrete molds. Our machine comprises a cutter and Cartesian coordinate type moving mechanism, where the cutter cuts EPS foam using a hotwire in the shape of '$\sqcap$' and is capable of adjusting its cutting angle in real-time while keeping its cutting width. We proved through cutting experiments on the CNC machine that cutting time was greatly shortened compared to the conventional method and that the resulting concrete mold satisfied manufacturing precision.

Reliability verification of cutting force experiment by the 3D-FEM analysis from reverse engineering design of milling tool (밀링 공구의 역 공학 설계에서 3D 유한요소 해석을 통한 절삭력 실험의 신뢰성 검증)

  • Jung, Sung-Taek;Wi, Eun-Chan;Kim, Hyun-Jeong;Song, Ki-Hyeok;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.54-59
    • /
    • 2019
  • CNC(Computer Numerical Control) machine tools are being used in various industrial fields such as aircraft and automobiles. The machining conditions used in the mold industry are used, and the simulation and the experiment are compared. The tool used in the experiment was carried out to increase the reliability of the simulation of the cutting machining. The program used in the 3D-FEM (finite element method) was the AdvantEdge and predicted by down-milling. The tool model is used 3D-FEM simulation by using the cutting force, temperature prediction. In this study, we carried out the verification of cutting force by using a 3-axis tool dynamometer (Kistler 9257B) system when machining the plastic mold Steel machining of NAK-80. The cutting force experiment data using on the charge amplifier (5070A) is amplified, and the 3-axis cutting force data are saved as a TDMS file using the Lab-View based program using on NI-PXIe-1062Q. The machining condition 7 was the most similar to the simulation and the experimental results. The material properties of the NAK-80 material and the simulation trends reflected in the reverse design of the tool were derived similarly to the experimental results.

Scan Tool-Path Generation for Laser Pattern Machining (레이저 패턴 가공용 스캔 공구경로 생성)

  • Lee, Chang-Ho;Park, Sang-Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.300-304
    • /
    • 2011
  • This paper proposes an approach to generate tool-path for laser pattern machining. Considering the mechanical structure of a laser pattern machine, it is quite similar to that of a 2D milling machine. Based on the observation, one may try to utilize the tool-path generation methodologies of 2D milling for the laser pattern machining. However, it is not possible to generate tool-path without considering the technological requirements of laser pattern machining which are different from those of 2D milling. In this paper, we identify the technological requirement of laser pattern machining, and propose a proper tool-path generation methodology to satisfy the technological requirements. For the efficient generation of tool-path, this paper proposes a tool-path element computation method, which is based on the concept of a monotone chain.

Characteristics of Abrasive Water Jet Milled Surface by Overlap Cutting (중첩가공에 의한 워터젯 밀링의 가공면 특성)

  • Park, Seung Sub;Kim, Hwa Young;Ahn, Jung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.118-123
    • /
    • 2016
  • Overlap cutting is a fundamental method of applying abrasive water jet (AWJ) machining to milling to produce a wider surface because the nozzle outlet is approximately 1.0 mm wide. In this study, the effects of overlap cutting on the depth profile and surface roughness are investigated. The overlapping area depends on the amount of step over, which is controlled in the pick-feed direction. If the step over is equal to or larger than the diameter of the nozzle, no overlap cut occurs but large cusps remain between the cut paths. A step over as small as one-thirds of the nozzle diameter may lead to triple-overlap cutting resulting in an extraordinary depth. By using pocket milling experiments with a step over of 0.46 (or 0.47), it is verified that AWJ can produce a milled surface of titanium, one of the hard-to-cut materials, with $76{\mu}m$ Ra.

Magnetic Properties of Sr-ferrite Powder Prepared by Intensive Mechanical Milling Technique

  • Kwon, H.W.;Bae, J.W.
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.118-120
    • /
    • 2003
  • As an alternative promising way of producing high coercivity Sr-ferrite for a permanent magnet application, intensive mechanical milling process was applied to the raw materials of the Sr-ferrite with different composition. Synthesising reactivity for the Sr-ferrite of the mechanically milled raw material containing $SrCO_3$, $La_2O_3$, $Fe_2O_3$, $Co_3O_4$, and $SiO_2$ was inferior to that of the raw material containing $SrCO_3$ and $Fe_2O_3$, The Sr-ferrite prepared from mechanically milled raw materials had profoundly improved magnetic properties compared to the Sr-ferrite prepared by conventional method. Beneficial effect of the substituting ($La_2O_3$, $Co_3O_4$) and additive ($SiO_2$) oxides for improving the magnetic properties was not exploited in the Sr-ferrite prepared from the mechanically milled raw material. The Sr-ferrite powder prepared from the mechanically milled raw materials was magnetically isotropic in nature.