• Title/Summary/Keyword: mechanical life

Search Result 2,990, Processing Time 0.031 seconds

Study on fatigue life and mechanical properties of BRBs with viscoelastic filler

  • Xu, Zhao-Dong;Dai, Jun;Jiang, Qian-Wei
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.139-150
    • /
    • 2018
  • In this paper, two kinds of buckling restrained braces (BRBs) are designed to improve the mechanical properties and fatigue life, the reserved gap and viscoelastic filler with high energy dissipation capacity are employed as the sliding element, respectively. The fatigue life of BRBs considering the effect of sliding element is predicted based on Manson-Coffin model. The property tests under different displacement amplitudes are carried out to evaluate the mechanical properties and fatigue life of BRBs. At last, the finite element analysis is performed to study the effects of the gap and viscoelastic filler on mechanical properties BRBs. Experimental and simulation results indicate that BRB employed with viscoelastic filler has a higher fatigue life and more stable mechanical property compared to BRB employed with gap, and the smaller reserved gap can more effectively improve the energy dissipation capacity of BRB.

ESTIMATION OF FATIGUE LIFE BY LETHARGY COEFFICIENT USING MOLECULAR DYNAMIC SIMULATION

  • Song, J.H.;Noh, H.G.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.215-219
    • /
    • 2004
  • A vehicle structure needs to be more precisely analyzed because of complexities and varieties. Structural fatigue which is generated by fluctuations of stresses during the service life of a mechanical system is the primary concern in the structural design for safety. A fatigue life is difficult to obtain in structural components during the service life of mechanical systems since the fluctuating stress contributes to fatigue. This study introduces new procedures to measure the lethargy coefficient and to predict the fatigue life of a mechanical structure by using molecular dynamic simulation. A lethargy coefficient is the total defect-estimating coefficient, which was obtained by using the results of a simple tensile test in this study. With this lethargy coefficient, fatigue life was estimated. The proposed method will be useful in predicting the fatigue life of a structurally-modified vehicle design. The effectiveness of the proposed method using lethargy coefficient measurement to predict the fatigue life of a structure was examined by applying this method to predict the fatigue life of SS41 steel, used extensively as material of vehicle structures. Two types of specimen such as pre-cracked plate and simple plate is discussed. equation of fatigue life using the lethargy coefficient and failure time, both obtained from a simple tensile test, will be useful in engineering. This measurement and prediction technology will be extended for use in analysis of any geometric shapes of modified automotive structures.

Development of accelerated life test method for mechanical components using Weibull-IPL(Inverse Power Law) model (와이블-역승법을 이용한 기계류부품의 가속시험 방법 개발)

  • Lee, Geun-Ho;Kim, Hyoung-Eui;Kang, Bo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.445-450
    • /
    • 2003
  • This study was performed 10 develop the accelerated life test method using Weibull-IPL(Inverse Power Law) model for mechanical components. Weibull-IPL model is concerned with determining the assurance life with confidence level and the accelerated life test time From the relation of weibull distribution factors and confidence limit, the testing times on the no number of failure acceptance criteria arc determined. The mechanical components generally represent wear and fatigue characteristics as a failure mode. IPL based on the cumulative damage theory is applied effectively the mechanical components to reduce the testing time and to achieve the accelerating test conditions. As the actual application example, accelerated life test method of agricultural tractor transmission was described. Life distribution of agricultural tractor transmission was supposed to follow Weibull distribution and life test time was calculated under the conditions of average life (MTBF) 3,000 hours and 90% confidence level for one test sample. According to IPL, because test time call be shorten in case increase test load test time could be reduced by 482 hours when we put the load 1.1 times of rated load than 0.73 times of rated load that is equivalent load calculated by load spectrum of the agricultural tractor. This time, acceleration coefficient was 11.7.

  • PDF

Mechanical Reliability(Life-Time) Estimation for 25.8kV Eco Solid Insulated Switchgear (25.8kV급 친환경 고체절연차단기(Solid Insulated Switchgear)에 대한 기계적 신뢰성(수명) 평가)

  • Lee, Do-Hoon;Lee, Seog-Won;Park, Seok-Weon;Kim, Young-Geun;Lee, Jhong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.202-205
    • /
    • 2010
  • In this paper, mechanical reliability(Life-time) estimation method for 25.8kV SIS(Solid Insulated Switchgear) has been studied. Recently enacted KEPCO's standard includes clause that have to submit a warrantable reliability data for life-time(over B10 25 years) of an epoxy-solid insulating material. Accordingly, this research was carried out on the ALT(Accelerated Life Test) and Life-Estimation method for SIS's insulating material. Mechanical life-time estimation for SIS's insulating material is to verify reliability for tensile creep & fatigue stress, which is the major mechanical stress of SIS. This study proved that SIS's reliability for mechanical stress and established that confidence for estimation results in further verification test.

Technology for Fatigue Life Prediction of Mechanical Components using Multibody Dynamics (다물체동력학을 이용한 기계 부품의 피로수명 예측 기술)

  • Han, Hyeong-Seok
    • 연구논문집
    • /
    • s.27
    • /
    • pp.47-55
    • /
    • 1997
  • Fatigue life prediction of mechanical components is necessary to develop new products, which is very expensive and time-consuming. This paper reviews technologies proposed for computation of dynamic stress in mechanical components. The methods based on multibody dynamics are considering more real operational conditions than other methods. The technology for fatigue life prediction without the prototype for experiment results in cost and time saving. This technology can be applied to design of various mechanical components like carbody.

  • PDF

Prediction of Gear Bending Fatigue Life of Electro-mechanical Actuator for Aircraft Through Finite Element Analysis

  • Kim, Taehyung;Seok, Taehyeon;Kwon, Soon-hyeong;Lee, Byung-ho;Kwon, Byung-gi;Kwon, Jun-yong;Cheong, Seong-kyun
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.58-67
    • /
    • 2020
  • In this study, finite element fatigue analysis combined with a fatigue correlation factor is proposed to predict the bending fatigue life of a gear in an electro-mechanical aircraft actuator. First, stress-life curves are obtained for the gear material via a round bar fatigue test. Subsequently, stochastic stress-life (P-S-N) curves are derived for 50% and 1% failure probabilities, separately. The curves are applied to the fatigue analysis model of a single gear tooth, and the effect of the fatigue correction factor is analyzed. The analytical P-S-N curves reflecting the fatigue correction factor matched the experimental data. This shows that the analytical fatigue life is reliable and that the analysis technique is effective.

Thermal-mechanical Fatigue Life Prediction of 12Cr Forged Steel Using Strain Range Partitioning method (변형률분할법에 의한 12Cr 단조강의 열피로 수명예측)

  • 하정수;옹장우;고승기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1192-1202
    • /
    • 1994
  • Fatigue behavior and life prediction were presented for thermal-mechanical and isothermal low cycle fatigue of 12Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test at 350 to 600.deg. C and isothermal low cycle fatigue test at 600.deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Cyclic softening behavior was observed regardless of thermal-mechanical and isothermal fatigue tests. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. The difference in fatigue lives was dependent upon the magnitudes of inelastic strain ranges and mean stresses. Increase in inelastic strain range showed a tendency of intergranular cracking and decrease in fatigue life, especially for out-of-phase thermal-mechanical fatigue. Thermal-mechanical fatigue life prediction was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase thermal-mechanical fatigue lives, which was quite improved conservatively by a proposed strain range partitioning method.

Remaining useful life prediction for PMSM under radial load using particle filter

  • Lee, Younghun;Kim, Inhwan;Choi, Sikgyoung;Oh, Jaewook;Kim, Namsu
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.799-805
    • /
    • 2022
  • Permanent magnet synchronous motors (PMSMs) are widely used in systems requiring high control precision, efficiency, and reliability. Predicting the remaining useful life (RUL) with health monitoring of PMSMs prevents catastrophic failure and ensures reliable operation of system. In this study, a model-based method for predicting the RUL of PMSMs using phase current and vibration signals is proposed. The proposed method includes feature selection and RUL prediction based on a particle filter with a degradation model. The Paris-Erdogan model describing micro fatigue crack propagation is used as the degradation model. An experimental set-up to conduct accelerated life test, capable of monitoring various signals was designed in this study. Phase current and vibration data obtained from an accelerated life test of the PMSMs were used to verify the proposed approach. Features extracted from the data were clustered based on monotonicity and correlation clustering, respectively. The results identify the effectiveness of using the current data in predicting the RUL of PMSMs.

Cellular machinery for sensing mechanical force

  • Lim, Chul-Gyun;Jang, Jiyoung;Kim, Chungho
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.623-629
    • /
    • 2018
  • For mechanical force to induce changes in cellular behaviors, two main processes are inevitable; perception of the force and response to it. Perception of mechanical force by cells, or mechanosensing, requires mechanical force-induced conformational changes in mechanosensors. For this, at least one end of the mechanosensors should be anchored to relatively fixed structures, such as extracellular matrices or the cytoskeletons, while the other end should be pulled along the direction of the mechanical force. Alternatively, mechanosensors may be positioned in lipid bilayers, so that conformational changes in the embedded sensors can be induced by mechanical force-driven tension in the lipid bilayer. Responses to mechanical force by cells, or mechanotransduction, require translation of such mechanical force-induced conformational changes into biochemical signaling. For this, protein-protein interactions or enzymatic activities of mechanosensors should be modulated in response to force-induced structural changes. In the last decade, several molecules that met the required criteria of mechanosensors have been identified and proven to directly sense mechanical force. The present review introduces examples of such mechanosensors and summarizes their mechanisms of action.

Heat Aging Effects on the Material Property and the Fatigue Life of Vulcanized Natural Rubber, and Fatigue Life Prediction Equations

  • Choi Jae-Hyeok;Kang Hee-Jin;Jeong Hyun-Yong;Lee Tae-Soo;Yoon Sung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1229-1242
    • /
    • 2005
  • When natural rubber is used for a long period of time, it becomes aged; it usually becomes hardened and loses its damping capability. This aging process affects not only the material property but also the (fatigue) life of natural rubber. In this paper the aging effects on the material property and the fatigue life were experimentally investigated. In addition, several fatigue life prediction equations for natural rubber were proposed. In order to investigate the aging effects on the material property, the load-stretch ratio curves were plotted from the results of the tensile test, the compression test and the simple shear test for virgin and heat-aged rubber specimens. Rubber specimens were heat-aged in an oven at a temperature ranging from $50^{\circ}C$ to $90^{\circ}C$ for a period ranging from 2 days to 16 days. In order to investigate the aging effects on the fatigue life, fatigue tests were conducted for differently heat-aged hourglass-shaped and simple shear specimens. Moreover, finite element simulations were conducted for the specimens to calculate physical quantities occurring in the specimens such as the maximum value of the effective stress, the strain energy density, the first invariant of the Cauchy-Green deformation tensor and the maximum principal nominal strain. Then, four fatigue life prediction equations based on one of the physical quantities could be obtained by fitting the equations to the test data. Finally, the fatigue life of a rubber bush used in an automobile was predicted by using the prediction equations, and it was compared with the test data of the bush to evaluate the reliability of those equations.