• Title/Summary/Keyword: mechanical energy

Search Result 9,890, Processing Time 0.038 seconds

Electrical and Mechanical Characteristics of Ni-YSZ Tubular Support Fabricated by Extrusion (압출공정에 의해 제조된 Ni-YSZ 원통형 음극 지지체의 특성)

  • Yu, Ji-Haeng;Kim, Young-Woon;Park, Gun-Woo;Seo, Doo-Won;Lee, Shi-Woo;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.768-774
    • /
    • 2006
  • The microstructure of Ni-YSZ cermets was controlled with fine and coarse starting powders (NiO and YSZ) to obtain a optimum strong and conductive tubular anode support for SOFCs. Three types of cermets with different microstructures, i.e., coarse Ni-fine YSZ, fine Ni-coarse YSZ, and fine Ni-fine YSZ, were fabricated to investigate their electrical and mechanical properties. The cermets from fine NiO powder showed high electrical conductivity due to the enhanced percolation of Ni particles. The cermet by foe Ni and coarse YSZ showed excellent electrical conductivity (>1000 S/cm) despite its high porosity $(\sim40%)$ but it showed poor mechanical strength due to the lack of percolation by YSZ particles and due to large pores. Thus fine NiO and YSZ powders were used to make strong and conductive Ni-YSZ support tube by extrusion. The microstructure of the anode tube was modified by the amount of polymeric additives and carbon black, a pore former. Ni-YSZ tube (porosity $\sim34%$) with the finer microstructure showed better performance both in electrical conductivity (>1000 S/cm) and fracture strength $(\sim140\;MPa)$. Either flat or circular NiO-YSZ tubes with the length from 20 to 40cm were successfully fabricated with the optimized composition of materials and polymeric additives.

Modified energy function of the active contour model for the tracking of deformable objects

  • Choi, Jeong, Ju;Kim, Jong-Shik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.47-50
    • /
    • 2006
  • An active contour model has been used to detect the edges in a still image. In order to apply the active contour model to edge detection, the energy function which consists of internal, external and image energies should be defined. After defining the energy function, the edge of an object is detected through minimization of the value of the energy function. In this paper, the modified internal energy function is proposed to improve the convergence of the energy function when the active contour model is applied to the tracking of deformable objects using the greedy algorithm. In order to show the performance of the proposed energy function, experiments were carried out for the still and animated images.

Ocean Wave Energy Converters - A Perspective

  • Parthasarathy, Nanjundan;Li, Kui Ming;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.707-715
    • /
    • 2012
  • Ocean waves are mighty and powerful. Humans have explored the possibility of harnessing this mighty power for decades now. Estimated as suffice, if only, a fraction of this energy is captured and harnessed, the worry for decrease in fossil fuels diminishes and the current energy consumption of the world can be met. Though different types of methods and devices for extracting energy from this nonstop, free source has been proposed, a handful of them have reached commercialization and others are on the verge. This paper discusses the journey so far in terms of devices that have been developed or prototypes proposed or commercialized. Only a list full of them have been discussed though they exist in numbers.

Development of Simulation Model Based Optimal Start and Stop Control Daily Strategy (시뮬레이션 모델기반 냉난방 설비 일별 최적 기동/정지 제어기법 개발)

  • Lee, Chanwoo;Koo, Junemo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2018
  • This work aims to develop a platform to investigate the effect of operation schedules on the building energy consumption and to derive a simulation model based optimal start and stop daily strategy. An open-source building energy simulation tool DOE2 is used for the engine, and the developed simulation model is validated using ASHRAE guideline 14. The effect of late-start/early-stop operation of HVAC system on the daily building energy consumption was analyzed using the developed simulation model. It was found that about 10% of energy consumption cut was possible using the control strategy for an hour of advance of the stop operation, and about 3% per an hour of delay of the start operation.

Necessity to Install Integrated Control Tower for Overseas Energy Resources Acquisition and Securing Funds (해외에너지자원획득과 소요자금 확보를 위한 통합 컨트롤 타워 설치 필요성에 관한 연구)

  • Kang, Ji-Kwang;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.6 no.3
    • /
    • pp.40-45
    • /
    • 2010
  • Necessity to install control towers has been studied to acquire overseas energy resources and to secure funds. At present, domestic energy companies do business independently. Institutions which support plant EPC companies as partners of package deal are separated. This causes the low records at package deal for overseas resources acquisition. Except UK and USA, nations which have major companies developed overseas energy resources early by promoting a large national company. Consequently, they currently have good records. This study suggests the necessities to install integrated control tower for overseas energy resources acquisition and securing funds and the following are the ways ; 1) promote a large national company by consolidation of separate energy companies, 2) install plant EPC promotion department which support private plant EPC companies, 3) make a integrated control tower in high level government office to connect between a large national company and plant EPC promotion department.

  • PDF

Energy-Efficient Cooperative Beamforming based CMISO Transmission with Optimal Nodes Deployment in Wireless Sensor Networks

  • Gan, Xiong;Lu, Hong;Yang, Guangyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3823-3840
    • /
    • 2017
  • This paper analyzes the nodes deployment optimization problem in energy constrained wireless sensor networks, which multi-hop cooperative beamforming (CB) based cooperative-multi-input-single-output (CMISO) transmission is adopted to reduce the energy consumption. Firstly, we establish the energy consumption models for multi-hop SISO, multi-hop DSTBC based CMISO, multi-hop CB based CMISO transmissions under random nodes deployment. Then, we minimize the energy consumption by searching the optimal nodes deployment for the three transmissions. Furthermore, numerical results present the optimal nodes deployment parameters for the three transmissions. Energy consumption of the three transmissions are compared under optimal nodes deployment, which shows that CB based CMISO transmission consumes less energy than SISO and DSTBC based CMISO transmissions. Meanwhile, under optimal nodes deployment, the superiorities of CB based CMISO transmission over SISO and DSTBC based CMISO transmissions can be more obvious when path-loss-factor becomes low.

Concept and Model of Energy Harvesting using Eddy Current (와전류를 이용한 에너지 포집의 개념과 모델)

  • Han, Ji-Hoon;Park, Sung-Keun;Ju, Gwang-Il;Lim, Seung-Hyun;Oh, Il-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3506-3511
    • /
    • 2007
  • The energy harvesting using smart materials has been extensively investigated to supply electric power to wireless sensor systems. In this paper, the energy harvesting using eddy current was studied with the integrated magnetic cantilever beam system. If a large conductive metal plate moves through a magnetic field which intersects perpendicularly to the sheet, the magnetic field will induce small rings of current which will actually create internal magnetic fields opposing the change. This eddy current that was induced in the coiled conductive sheet from the mechanical vibration was converted to chemical energy by charging batteries. The experimental results show that the eddy current generated the electric power up to max 31.2mW. Additionally the vibration reduction of the mechanical cantilever beam was observed by the energy dissipation in the electro-magnetic coupled system. The present result shows that the vibration level of the first natural frequency was reduced up to 7.7dB

  • PDF

Computational Study of Energy Loss in a Pipe of Refuse Collecting System (쓰레기 관로운송 시스템의 운송에너지 손실에 관한 수치해석적 연구)

  • Lee, Jong-Gil;Byun, Jae-Ki;Choi, Young-Don;Choi, Yoon;Hong, Ki-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • This paper describes energy loss in a pipe line of refuse collecting system. Analysis of energy loss in a pipe line is the decisive factor in a design of refuse collecting system. Using the results of energy loss analysis, we can determine the power of turbo-blower. The flow characteristics of the pipe line with refuse bags were analyzed by three-dimensional CFD. The refuse bag is modeled by using the shape obtained from profile measurement. Friction factors were calculated with changing the refuse bag size, mixing ratio and Reynolds number. And drag coefficients were calculated using the CFD results. From the results we can calculate energy loss in a pipe line of refuse collecting system and predict the capacity of turbo-blower.

Analysis on Torque, Flowrate, and Volumetric Displacement of Gerotor Pump/Motor

  • Yun, Hongsik;Ham, Young-Bog;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.28-37
    • /
    • 2020
  • It is difficult to analytically derive the relationship among volumetric displacement, flowrate, torque, and rotation speed regarding an instantaneous position of gerotor hydraulic pumps/motors. This can be explained by the geometric shape of the rotors, which is highly complicated. Herein, an analytical method for the instantaneous torque, rotation speed, flowrate, and volumetric displacement of a pump/motor is proposed. The method is based on two physical concepts: energy conservation and torque equilibrium. The instantaneous torque of a pump/motor shaft is determined for the posture of rotors from the torque equilibrium. If the torque equilibrium is combined with the energy conservation between the hydraulic energy of the pump/motor and the mechanical input/output energy, the formula for determining the instantaneous volumetric displacement and flowrate is derived. The numerical values of the instantaneous volumetric displacement, torque, rotation speed, and flowrate are calculated via the MATLAB software programs, and they are illustrated for the case in which inner and outer rotors rotate with respect to fixed axes. The degrees of torque fluctuation, speed fluctuation, and flowrate fluctuation can be observed from their instantaneous values. The proposed formula may provide a better understanding of the design or analysis process of gerotor pumps/motors.

A Study of the Ankle Joint to Mechanical Energy in Crouching Start According to the Backward Block Inclined Angle Increase (크라우칭(Crouching) 스타트 시 뒤 블록 각도 변화에 따른 발목 관절의 기계적 에너지에 대한 연구)

  • Kwon, Moon-Seok;Shin, Seong-Hyoo
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.19-28
    • /
    • 2005
  • The purpose of this study was to improve the ankle joint to mechanical energy in Crouching start according to the backward block inclined angle(F, F(+1), F(+2)) increase. For purpose of this study the ankle joint was considered as a single hinge joint rotation about a transverse axis. A two-dimensional(sagittal plane) analysis was performed on data collected from 3 spriters(university student). During Crouching start, the ankle joint moment showed a similar patterns according to the backward block inclined angle increase. The peak values of ankle joint moment was plantar flexion approximately 80% throughout the contact phase for Crouching start. The absorbed and generated energy represented different values from the backward block inclined angle increase at ankle joint. On the backward block inclined angle F, subject A($55^{\circ}$) and C($50^{\circ}$) Produced energy generation more than other block inclined angles. On the backward block inclined angle F(+2), subject B($50^{\circ}$) showed largest energy generation.