• Title/Summary/Keyword: mechanical cutting

Search Result 1,261, Processing Time 0.028 seconds

The Optimization Analysis for the Selection of Cutting Parameters in Turning Operation

  • Hong, Min-Sung;Lian, Zhe-Man
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.97-103
    • /
    • 2001
  • This paper has focused on the Optimization of the cutting parameters for urning operation based on the Taguchi method. Four cutting parameters. nemely, cutting speed, feed depth of cut and nose radius are optimized with consideration of the surface roughness. The design and analysis of experiments are conducted to study the performance characteristic. The effects of these parameters on the surface roughness have been investigated using signal-to-noise(S/N) ratio and analy-sis of variance(ANOVA). The experiments have been performed using coated tungsten carbide inserts without any cutting fluid. Experimental results illustrate the effectiveness of this approach.

  • PDF

DEVELOPMENT OF A VIRTUAL MACHINING SYSTEM FOR ESTIMATION OF CUTTING PERFORMANCE

  • Ko, Jeong-Hoon;Cho, Dong-Woo;Yun, Won-Soo
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.288-294
    • /
    • 2001
  • Present CAM technology cannot provide important physical property such as cutting farce and machined surface. Thus, the selection of cutting conditions still depends on the experience of an expert or on the machining data handbook in spite of the developed CAM technology. This paper presents an advanced methodology to help the worker to determine optimum cutting condition for CHC machining that excludes the need for expertise of machining data handbook. The virtual machining system presented in this paper can simulate the real machining states such as cutting farce and machined surface error. And virtual machining system can schedule feed rate to adjust the cutting force to the reference force.

  • PDF

Adaptive Cutting Parameter Optimization Applied to Face Milling Operations (면삭 밀링공정에서의 절삭조건의 적응 최적화)

  • 고태조;조동우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.713-723
    • /
    • 1995
  • In intelligent machine tools, a computer based control system, which can adapt the machining parameters in an optimal fashion based on sensor measurements of the machining process, should be incorporated. In this paper, the technology for adaptively optimizing the cutting conditions to maximize the material removal rate in face milling operations is proposed using the exterior penalty function method combined with multilayered neural networks. Two neural networks are introduced ; one for estimating tool were length, the other for mapping input and output relations from experimental data. Then, the optimization of cutting conditions is adaptively implemented using tool were information and predicted process output. The results are demonstrated with respect to each level of machining such as rough, fine and finish cutting.

Measurement Technique of Cutting Temperatures Using Implanted Thermocouples in Ball End-Milling (볼 엔드밀링에서 열전대를 이용한 절삭온도 측정법)

  • Lee, Deuk-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1748-1752
    • /
    • 2000
  • In this paper, the measurement technique of cutting temperatures of shear zone using implanted thermocouples is proposed in ball end milling. K-type thermocouple implanted in the hole of workpieces is directly cut in order to measure temperatures of the shear zone in cutting process. Experiments are performed for a nickel based superalloy(Inconel 718) using a ball nose end mill. The results show that the cutting temperature in shear zone is about 3200C at the cutting speed of 90m/min with dry.

Analysis of residual stress redistribution of weldment due to cutting (절단에 따른 용접부 잔류응력 재분포 해석)

  • Yang, Seung-Yong;Goo, Byeong-Choon;Choi, Sung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1074-1079
    • /
    • 2003
  • In this paper, we conducted finite element analysis to investigate the residual stress redistributions of weldment due to cutting. To evaluate the effect of the residual stress on the fatigue behavior of weldment, test specimens are commonly cut from the weldment, but the distributions of the residual stress in the cut specimen should be different from those in the original weldment. Our work is to evaluate the difference between the residual stresses before and after weldment-cutting to understand the effect of cutting on the residual stress. Transient heat analysis, elastic-plastic mechanical analysis and element removal technique are used to simulate the welding and cutting procedures on the commercial finite element code ABAQUS.

  • PDF

The Optimal Selection of Cutting Parameters in Turning Operation

  • Hong, Min-Sung;Lian, Zhe-Man
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.242-248
    • /
    • 2000
  • This paper has focused on the optimization of the cutting parameters for turning operation based on the Taguchi method. Four cutting parameters, namely, cutting speed, feed, depth of cut and nose radius are optimized with consideration of the surface roughness. The design and analysis of experiments are conducted to study the performance characteristic. The effects of these parameters on the surface roughness have been investigated using the signal-to-noise (S/N) ratio, analysis of variance (ANOVA). The experiments have been peformed using coated tungsten carbide inserts without any cutting fluid. Experimental results illustrate the effectiveness of this approach.

  • PDF

Analysis of Cutting Edge Geometry Effect on Surface Roughness in Ball-end Milling Using the Taguchi Method (다구찌 방법을 통한 볼 엔드밀 절삭날 형상이 가공면 거칠기에 미치는 영향 분석)

  • Cho, Chul Yong;Ryu, Shi Hyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.569-575
    • /
    • 2014
  • In this study, the effect of cutting edge geometry, such as helix and rake angles, on surface roughness in ball-end milling is investigated by using the Taguchi method. A set of experiments adopting the $L_{27}(3^{13})$ design with an orthogonal array are conducted with special WC ball-end mills having different helix and rake angles. Analysis of variance (ANOVA) is performed to analyze the effects of tool geometry and machining parameters, such as cutting speed, feed per tooth, and depth of cut, on surface roughness. The ANOVA results reveal that helix and rake angles are critical factors affecting surface roughness; the interaction of helix angle and cutting speed is also important. This research can contribute to novel cutting edge designs of ball-end mills and optimization of cutting parameters.

Development of new predictive analysis in the orthogonal metal cutting process by utilization of Oxley's machining theory

  • Abdelkader, Karas;Mohamed, Bouzit;Mustapha, Belarbi;Redha, Mazouzi
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1467-1481
    • /
    • 2015
  • This paper presents a contribution to improving an analytical thermo-mechanical modeling of Oxley's machining theory of orthogonal metals cutting, which objective is the prediction of the cutting forces, the average stresses, temperatures and the geometric quantities in primary and secondary shear zones. These parameters will then be injected into the developed model of Karas et al. (2013) to predict temperature distributions at the tool-chip-workpiece interface. The amendment to Oxley's modified model is the reduction of the estimation of time-related variables cutting process such as cutting forces, temperatures in primary and secondary shear zones and geometric variables by the introduction the constitutive equation of Johnson-Cook model. The model-modified validation is performed by comparing some experimental results with the predictions for machining of 0.38% carbon steel.

An Analysis of the Dynamic Cutting Force on Face Milling Operation (正面 밀링 作業에서 動切削力의 解析)

  • 김희술;이상석;이병철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2268-2278
    • /
    • 1992
  • The vibratory modal for the face milling operation is assumed as a multi degrees of freedom system. The parameters of the system are determined based on the cutting experiment. From the relative displacements of this system the dynamic cutting forces were derived and simulated by the double modulation principle. The simulated cutting forces and measured cutting forces have a good agreement in time and frequency domains.

A Study of Cutting Factor Analysis and Reliability Evaluation of ASTM(F136-96) Material by Taguchi Method (다구치 방법에 의한 ASTM(F136-96)의 절삭인자 분석과 신뢰성 평가)

  • Jang, Sung-Minl;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.1-6
    • /
    • 2008
  • Machine operator and quality are affected by chip during cutting process to product machine parts. This paper presents a study of the influence of cutting conditions on the surface roughness obtained by turning using Taguchi method for safety of turning operator. In the machining of titanium alloy, high cutting temperature and strong chemical affinity between the tool and the work material are generated because of its low thermal conductivity and chemical reactivity. Therefore titanium alloys are known as difficult-to materials. An orthogonal array, the signal-to-noise ratio, the analysis of variance are employed to investigate the cutting characteristics of implant material bars using tungsten carbide cutting tools of throwaway type. Also Experimental results by orthogonal array are compared with optimal condition to evaluate advanced reliability. Required simulations and experiments are performed, and the results are investigated.