• Title/Summary/Keyword: mechanical contact

Search Result 3,205, Processing Time 0.037 seconds

A Study on the Temperature Change of Braking Disc and Thermal Conductivity during the Service (철도차량용 제동디스크의 운행중 온도 변화 및 열전도도 측정 연구)

  • Kim, Jae-Hoon;Goo, Byeong-Choon;Suk, Chang-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.665-669
    • /
    • 2007
  • This study investigates the temperature change and thermal conductivity for the braking disc of the railway vehicle due to the types of train and service conditions. The temperature change was measured by non-contact Infrared thermometers. Average temperature was measured between $79.32^{\circ}C$ and $104.46^{\circ}C$ due to types of train and service section. In the same service section, the surface temperatures of Saemaul train were higher than Mugungwha train; the reason might have been the average service speed of Saemaul train (83km/h) was higher than Mugungwha train (107km/h), and the weight was similar 39t (Mugungwha) and 39.3t (Saemaul). But the maximum surface temperature was measured on the Mugungwha train; however the difference was not too big with the maximum temperature of Saemaul train. Also, the disc surface temperatures were changed due to the material of lining; metal and non-asbestos, on the same train and the same service section. In addition. the thermal conductivity was tested the thermal conductivities were increased by the increasing of the temperature. The change is too big between $100^{\circ}C$ and $200^{\circ}C$. But each average value is small. and the mechanical property change is very low. As a result, we conclude that this disc is suitable for usage between $100^{\circ}C$ and $300^{\circ}C$.

Development of Digital-Image-Correlation Technique for Detecting Internal Defects in Simulated Specimens of Wind Turbine Blades (풍력 블레이드 모의 시편의 내부 결함 검출을 위한 이미지 상관법 기술 개발)

  • Hong, Kyung Min;Park, Nak Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.205-212
    • /
    • 2020
  • In the performance of a wind turbine system, the blades play a vital role. However, they are susceptible to damage arising from complex and irregular loading (which may even cause catastrophic collapse), and they are expensive to maintain. Therefore, it is very important both to find defects after blade manufacturing is completed and to find damage after the blade is used for a certain period of time. This study provides a new perspective for the detection of internal defects in glass-fiber- and carbon-fiber-reinforced panels, which are used as the main materials in wind turbine blades. A gap or fracture between fiber-reinforced materials, which may occur during blade manufacturing or operation, is simulated by drilling a hole 5 mm in diameter in the middle layer of the laminated material. Then, a digital-image-correlation (DIC) method is used to detect internal defects in the blade. Tensile load is applied to the fabricated specimen using a tensile tester, and the generated changes are recorded and analyzed with the DIC system. In the glass-fiber-reinforced laminated specimen, internal defects were detected from a strain value of 5% until the end of the experiment, while in the case of the carbon-fiber-reinforced laminated specimen, internal defects were detected from 1% onward. It was proved using the DIC system that the defect was detected as a certain level of strain difference developed around the internal defects, according to the material properties.

Stability Characteristics based on Crane Weight of Small Fishing Vessels Under Standard Loading Conditions: Investigation Report of the Capsize Accident at Goseong Port (크레인 교체에 따른 표준재화 상태에서의 소형 어선의 복원성 특성 - 고성항 전복 사고 재결서 중심 -)

  • Kang, Dae Kon;Lee, Gun Gyung;Lee, Jun Ho;Han, Seung Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2020
  • In March 2016, a 6.67-ton fishing boat capsized owing to the loss of stability during crane operations. Capsizing occurs when a boat or ship is flipped over (or turned upside down) for reason other than accidents caused by collisions, contact, stranding, fire or explosion. Over the past nine years (2010-2018), capsize accidents have accounted for 2.34 % of all marine accidents and are gradually increasing. The loss of stability from improper shipping is the main cause of most capsizes, especially for small fishing vessels weighing 10 tons. According to the Fishing Vessel Act, small fishing vessels weighing less than a ton are exempted from inspections on stability and load cranes. This study analyzes the issue cited as the reason for the capsizing of the small fishing boat in Goseong, namely, the reduction of restoring moment due to increased weight of the crane. Fishing boats with similar loading conditions were modeled on the basis of re-determination, and their stability before and after the accident was assumed. The fishing boats with heavier cranes were found to be at higher risk of capsizing owing to the reduction of the restoring moment and the angle of deck immersion. Under standard loading conditions, the stability moments of fishing vessels are lesser during fishing, compared to when they depart from or arrive at the port.

Development of Epoxy Based Stretchable Conductive Adhesive (신축 가능한 에폭시 베이스 전도성 접착제 개발)

  • Nam, Hyun Jin;Lim, Ji Yeon;Lee, Chang Hoon;Park, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.49-54
    • /
    • 2020
  • To attach a stretchable/flexible electrode to something or something to on electrode, conductive adhesives must be stretchable/flexible to suit the properties of the electrode. In particular, conductive adhesive require durability and heat resistance, and unlike conventional adhesives, they should also have conductivity. To this end, Epoxy, which has good strength and adhesion, was selected as an adhesive, and a plasticizer and a reinforcement were mixed instead of a two-liquid material consisting of a conventional theme and a hardener, and a four-liquid material was used to give stretchability/flexibility to high molecules. The conductive filler was selected as silver, a material with low resistance, and for high conductivity, three shapes of Ag particles were used to increase packing density. Conductivity was compared with these developed conductive adhesives and two epoxy-based conductive adhesives being sold in practice, and about 10 times better conductivity results were obtained than products being actually sold. In addition, conductivity, mechanical properties, adhesion and strength were evaluated according to the presence of plasticizers and reinforcement agent. There was also no problem with 60% tensile after 5 minutes of curing at 120℃, and pencil hardness was excellently measured at 6H. As a result of checking the adhesion of electrodes through 3M tape test, all of them showed excellent results regardless of the mixing ratio of binders. After attaching the Cu sheet on top of the electrode through conductive adhesive, the contact resistance was checked and showed excellent performance with 0.3 Ω.

A study on the micromotion between the dental implant and superstructure (임플란트와 상부구조물 사이의 micromotion에 관한 연구)

  • Kim, Ji-Hye;Song, Kwang-Yeob;Jang, Tae-Yeob;Park, Ju-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Treatment with implants of single tooth missing cases is both functional and esthetic. Although the success rate of single-tooth implant treatments is increasing, sometimes it makes some problems. Problems with single-tooth implant treatments include soft tissue complications, abutment screw fracture, and most commonly, abutment screw loosening, and these involve the instability of the dental implant-superstructure interface. This study investigated and compared dental implant screw joint micromotion of various implant system with external connection or internal connection when tested under simulated clinical loading, Six groups (N=5) were assessed: (1) Branemark AurAdapt (Nobel Biocare, Goteborg, Sweden), (2) Branemark EsthetiCone (Nobel Biocare, Goteborg, Sweden), (3) Neoplant Conical (Neobiotec, Korea), (4) Neoplant UCLA (Neobiotec, Korea), (5) Neoplant 5.5mm Solid (Neobiotec, Korea), and (6) ITI SynOcta (Institute Straumann, Waldenburg, Switzerland). Six identical frameworks were fabricated. Abutment screws were tightened to 32-35 Ncm and occlusal screw were tightened to 15-20 Ncm with an electronic torque controller. A mechanical testing machine applied a compressive cyclic load of 20kg at 10Hz to a contact point on each implant crown. Strain gauge recorded the micromotion of the screw joint interface once a second. Data were selected at 1, 500, 5,000, 10,000, 20,000, 30,000, 40,000 and 50,000 cycle and 2-way ANOVA test was performed to assess the statistical significance. The results of this study were as follows; The micromotion of the implant-superstructure in the interface increased gradually through 50,000 cycles for all implant systems. In the case of the micromotion according to cycle increase, Neoplant Conical and Neoplant UCLA system exhibited significantly increasing micromotion at the implant-superstructure interface (p<0.05), but others not significant. In the case of the micromotion of the implant-superstructure interface at 50,000 cycle, the largest micromotion were recorded in the Branemark EsthetiCone, sequently followed by Neoplant Conical, Neoplant UCLA, Branemark AurAdapt, ITI SynOcta and Neplant Solid. Internal connection system showed smaller micromotion than external connection system. Specially, Neoplant Solid with internal connection system exhibited significantly smaller micromotion than other implant systems except ITI SynOcta with same internal connection system (p<0.05). In the case of external connection, Branemark EsthetiCone and Neoplant Conical system with abutment showed significantly larger micromotion than Branemark AurAdapt without abutment (p<0.05).

Evaluation of tissue ingrowth and reaction of a porous polyethylene block as an onlay bone graft in rabbit posterior mandible

  • Sosakul, Teerapan;Tuchpramuk, Pongsatorn;Suvannapruk, Waraporn;Srion, Autcharaporn;Rungroungdouyboon, Bunyong;Suwanprateeb, Jintamai
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.2
    • /
    • pp.106-120
    • /
    • 2020
  • Purpose: A new form of porous polyethylene, characterized by higher porosity and pore interconnectivity, was developed for use as a tissue-integrated implant. This study evaluated the effectiveness of porous polyethylene blocks used as an onlay bone graft in rabbit mandible in terms of tissue reaction, bone ingrowth, fibrovascularization, and graft-bone interfacial integrity. Methods: Twelve New Zealand white rabbits were randomized into 3 treatment groups according to the study period (4, 12, or 24 weeks). Cylindrical specimens measuring 5 mm in diameter and 4.5 mm in thickness were placed directly on the body of the mandible without bone bed decortication, fixed in place with a titanium screw, and covered with a collagen membrane. Histologic and histomorphometric analyses were done using hematoxylin and eosin-stained bone slices. Interfacial shear strength was tested to quantify graft-bone interfacial integrity. Results: The porous polyethylene graft was observed to integrate with the mandibular bone and exhibited tissue-bridge connections. At all postoperative time points, it was noted that the host tissues had grown deep into the pores of the porous polyethylene in the direction from the interface to the center of the graft. Both fibrovascular tissue and bone were found within the pores, but most bone ingrowth was observed at the graft-mandibular bone interface. Bone ingrowth depth and interfacial shear strength were in the range of 2.76-3.89 mm and 1.11-1.43 MPa, respectively. No significant differences among post-implantation time points were found for tissue ingrowth percentage and interfacial shear strength (P>0.05). Conclusions: Within the limits of the study, the present study revealed that the new porous polyethylene did not provoke any adverse systemic reactions. The material promoted fibrovascularization and displayed osteoconductive and osteogenic properties within and outside the contact interface. Stable interfacial integration between the graft and bone also took place.

Pseudoepidemic of Mycobacteria Other Than Tuberculosis (MOTT) Due to Contaminated Bronchoscope (기관지경 오염에 의한 비결핵항산균증의 위발생)

  • Kwak, Seung-Min;Kim, Se-Kyu;Jang, Joong-Hyun;Lee, Hong-Lyeol;Lee, Yi-Hyung;Kim, Sung-Kyu;Lee, Won-Young;Jeong, Yoon-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.1
    • /
    • pp.29-34
    • /
    • 1993
  • Background: The development of the flexible fiberoptic broncoscope by Ikeda was an important technologic advance in the diagnosis and management of patients with pulmonary disease. But, cross contamination related to fiberoptic bronchoscope was reported in cases involving tubercle bacilli, MOTT and other agents. Therefore, cleaning and disinfecting of fiberoptic bronchoscope requires careful attention. Methods: From September 1991 to May 1992, medical records of all patients with positive culture for MOTT in bronchial washing specimens were reviewed. Also to evaluate bactericidal effect of 2% glutaraldehyde, culture was performed after inoculum of MOTT, Serratia marsescens and Pseudomonas aeruginosa to the disinfectant solution. Results: In 2% alkaline glutaraldehyde, MOTT was not survived only after 30 minute exposure, but P. aeruginosa and S. marsescens were rapidly inactivated with no survivors after exposure to 2% glutaraldehyde. Since vigorous mechanical cleansing and more than 30 minute of contact time within washing machine, no more outbreak was observed. Conclusions: It is also very important that bronchoscopes must be meticulously cleaned after each procedure and more than 30 minute exposure would be required for eradication of MOTT with 2% glutaraldehyde. However even the most strictly applied infection control measures cannot exclude contamination completly and clinicians have to stay alert to this possibility. Prompt detection of pseudoepidemics is possible if abrupt increase in isolation rates, especially if they involve unusual or generally nonpathogenic organisms, are readily recognized.

  • PDF

A Study on the Side Impact Characteristics Occurred from SUV-to-Passenger Car using LS-DYNA (LS-DYNA를 이용한 SUV와 승용차의 측면충돌 특성에 대한 연구)

  • Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.217-226
    • /
    • 2018
  • Since the sides of a vehicle are designed asymmetrically unlike its front or rear, the degree of deformation of the car body greatly differs depending on the site of collision if a broadside collision takes place. When elastic deformation and plastic deformation occur in the car body occur due to a collision, the kinetic energy is absorbed into the body, and the momentum decreases. Generally, an analysis of traffic accidents analyzes the vehicle's behavior after a collision by the law of momentum conservation and corrects the error of the amount of energy absorption due to the deformation of the car body, applying a restitution coefficient. This study interpreted a finite element vehicle model applying the structure of the car body and the material properties of each part with LS-DYNA, analyzed the result and drew the restitution coefficient and the depth of penetration according to the contact area of the vehicle in a broadside collision between an SUV and a passenger car. When the finally calculated restitution coefficient and depth of penetration were applied to the examples of the actual traffic accidents, there was an effect on the improvement of the error in the result. It was found that when the initial input value, drawn using the finite element analysis model, it had a higher reliability of the interpretation than that of the existing analysis techniques.

Evaluation of Ultrasonic Nonlinear Characteristics in Heat-Treated Aluminum Alloy (열처리된 알루미늄 합금의 초음파 비선형 특성 평가)

  • Kim, JongBeom;Cheon, Chung;Jhang, Kyung-Young;Kim, Chung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.193-197
    • /
    • 2013
  • In this study, ultrasonic nonlinear characteristics in the heat-treated aluminum alloy have been evaluated. The nonlinearity of ultrasonic wave has been measured as the acoustic nonlinear parameter ${\beta}$, depending upon the amplitude ratio of the second-order harmonic and the fundamental frequency component of ultrasonic wave propagating through the materials. The parameter ${\beta}$ measurement has been carried out with the reflected signals from the back-wall of specimens at the same plane using the contact-type transducers. The heat-treatment, aging, has been achieved at $300^{\circ}C$ for various durations in the range of 1 to 50 hours. The tensile strength and elongation are obtained by the tensile test and then compared with the parameter ${\beta}$. There is a peak of the acoustic nonlinear parameter ${\beta}$ on 5 hours aging and the ${\beta}$ decreases thereafter, exhibiting closed relations with tensile strength and elongation. Also, the heat-treatment time showing peak in the parameter ${\beta}$ was identical to that showing severe change in the ${\sigma}-{\varepsilon}$ curve. These results suggest that the acoustic nonlinear parameter ${\beta}$ can be used for monitoring the strength variations with aging of aluminum alloys.

Failure Examples Study Including with timing belt, Constant Velocity Boot and Weather strip on a Car (자동차의 타이밍벨트, 등속조인트 부트, 웨더 스트립에 관련된 고장사례 고찰)

  • Lee, Il Kwon;Lee, Jong Ho;Hwang, Han Sub;Yim, Ha Young;You, Chang Bae;Kim, Young Kyu;Kim, Choo Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • This paper is to study the examples for rubber damage and weaken reliability of timing belt, constant velocity joint boot and weather strip in vehicle. The first example, when the service man replaced the new timing-belt of rubber material, he assembled the belt that was weaken it's contact surface because of material transform. He knew the abnormally tearing failure by friction action between belt and sprocket. The second example, it certified the fact that the grease is leaked out boot protecting of constant velocity joint by split of rubber surface because of durability badness. The third example, the weather stripe took the minutely tearing because of damage produced the material transform by crack of chemistry change. It certified the production phenomenon of a tiny noise by coming with outside air because of overlapped the rubber of weather stripe when driving after closing the door. Therefore, the driver must always manage the rubber system part of vehicle.