• Title/Summary/Keyword: mechanical connection

Search Result 543, Processing Time 0.025 seconds

Estimation of Hovering Flight Time of Battery-Powered Multicopters

  • Cho, Mun jin;Han, Cheolheui
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.11-20
    • /
    • 2021
  • The estimation of hovering flight time of multicopters using the battery power propulsion system is important for the development and design of the aircraft and its operation. For a given operational weight, the maximum possible battery weight can be decided using both a conventional energy density method and a new Peukert law. In the present study, the hovering flight time is predicted using both methods. The specific data of multicopters in the published literatures were employed for the computation of the hovering flight time. The results were validated with the measured data. The effect of figure of merit of propeller, battery discharging process on the hovering flight time was evaluated, Finally, the effect of the battery cell and package connection types on the hovering time was investigated. It was found that the combination of serial battery cell connections and parallel package connection is the bast in the endurance maximization aspect. As the cell number increases in a package, the hovering flight time is increased. There exists the max. battery ratio for the given takeoff gross weight.

Analysis of Flow Performance Factors According to Extreme Temperature Conditions of Hydrogen Inflow of FCEV Charging System Check Valve (FCEV 충전 시스템 체크밸브의 수소 유입 극한 온도 조건에 따른 유동 성능 인자 분석)

  • SEUNG HUN OH;HYUN KYU SUH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.514-525
    • /
    • 2023
  • This study conducted numerical simulations with the purpose of analyzing the impact of variations in outlet pressure conditions under extreme temperature conditions on the fluid dynamics and performance of a check valve utilized in hydrogen refueling systems. Under the extreme temperature conditions, changes in outlet pressure conditions of the check valve were investigated to analyze velocity distributions, pressure distributions, and temperature distributions in the operational and connection regions. The analysis results indicated that changes in outlet pressure had a significant influence on the internal temperature variation of the check valve. Furthermore, due to density variations in the connection region caused by the cooling effect of excessively cooled hydrogen, a bias in the primary flow direction towards the lower part of the valve outlet was observed in the outlet area. Through a comparison of the results of the valve's inherent flow performance, represented by the flow coefficient, it was observed that when the pressure difference between the inlet and outlet was below 0.37 MPa, sufficient flow was not ensured.

Impact of Complex Hemodynamics to the Management of ArterioVenous(AV) Fistula (동정맥루의 복합성 혈류학 소견이 그 관리에 미치는 영향)

  • Lee Byung-Boons
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.9-10
    • /
    • 2002
  • Human circulatory system between heart and tissue is not directly connected in normal condition but mandatory to go through the capillary system in order to fulfill its physiologic aim to deliver oxygen and nutrients, etc. to the tissue and retrieve used blood together with waste products from the tissue properly. When abnormal connection between arterial and venous system (AV fistula), these two circulatory systems respond differently to the hemodynamic impact of this abnormal connection between high pressure (artery) and low pressure (vein) system. Depending upon the location and/or degree (e.g. size and flow) of fistulous condition, each circulatory system exerts different compensatory hemodynamic response to this newly developed abnormal inter-relationship between two systems in order to minimize its hemodynamic impact to own system of different hemodynamic characteristics. Pump action of the heart can assist the failing arterial system directly to maintain arterial circulation against newly established low peripheral resistance by the AV fistula during the compensation period, while it affects venous system in negative way with increased venous loading. However, the negative impact of increased heart action to the venous system is partly compensated by the lymphatic system which is the third circulatory system to assist venous system independently with different hemodynamics. The lymphatic system with own unique Iymphodynamics based on peristaltic circulation from low resistance to high resistance condition, also increases its circulation to assist the compensation of overloaded venous system. Once these compensation mechanisms should fail to fight to newly established hemodynamic condition due to this abnormal AV connection, each system start to show different physiologic ${\underline{de}compensation}$ including heart and lymphatic system. The vicious cycle of decompensation between arterial and vein, two circulatory system affecting each other by mutually negative way steadily progresses to show series of hemodynamic change throughout entire circulation system altogether including heart. Clinical outcome of AV fistula from the compensated status to decompensated status is closely affected by various biological and mechanical factors to make the hemodynmic status more complicated. Proper understanding of these crucial biomechanical factors iii particular on hemodyanmic point of view is mandatory for the advanced assessment of biomechanical impact of AV fistula, since this new advanced concept of AY fistula based on blomechanical information will be able to improve clinical control of the complicated AV fistula, either congenital or acquired.

  • PDF

Deformation Analysis of Carrier Pipe for Cold Shrinkable Joint (CSJ 개발을 위한 캐리어 파이프의 변형해석)

  • Lee, Yang-Chang;Lee, Joon-Seong;Lee, Ho-Jeong;Ryu, Jeong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.314-319
    • /
    • 2010
  • This paper represents the results of study on Extra High Voltage Power Cable Connection System Development. The purpose is to evaluate structural safety by numerical analysis for the relaxation of electric field concentration and by structural analysis of Carrier Pipe for easy installation of High Insulating Rubber Sleeve in the field, which is core technique of connection system. According to the results, the thickness of Carrier Pipe needs at least 9mm by optimization analysis of deformation behavior and insulating design & relaxation of electric field concentration. The result of contraction behavior of the connection part can be demonstrated with the same result of electric field relaxation analysis at the boundary of the electrode inserted into the insulating rubber sleeve.

Development of the Connection Unit with a Gas Gun Installed in a Quadcopter-type Drone (쿼드콥터형 드론에 설치된 가스총 결합유닛의 개발)

  • Jeon, Junha;Kang, Ki-Jun;Kwon, Hyun-Jin;Chang, Se-Myong;Jeong, Jae-Bok;Baek, Jae-Gu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.774-781
    • /
    • 2018
  • In this investigation, a gas gun is proposed driven by carbon dioxide gas and installed on a quadcopter-type small unmanned drone for the purpose of cattle vaccination, and we developed a launcher and its connection unit. The system consists of a commercial drone, a gas gun, a solenoid valve, and the remote communication controller, etc. The velocity of launched projectile is measured, and the full system is finally validated through ground test and flight examination loaded for the real aircraft. The feasibility is checked if this technology is applicable to various disease abatement and hazard mitigation in the fields of agriculture and fire-fighting with the present research and development.

EXPERIMENTAL VALIDATION OF THE POTENTIAL FIELD LANEKEEPING SYSTEM

  • Rossetter, E.J.;Switkes, J.P.;Gerdes, J.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.95-108
    • /
    • 2004
  • Lanekeeping assistance has the potential to save thousands of lives every year by preventing accidental road departure. This paper presents experimental validation of a potential field lanekeeping assistance system with quantitative performance guarantees. The lanekeeping system is implemented on a 1997 Corvette modified for steer-by-wire capability. With no mechanical connection between the hand wheel and road wheels the lanekeeping system can add steering inputs independently from the driver. Implementation of the lanekeeping system uses a novel combination of a multi-antenna Global Positioning System (GPS) and precision road maps. Preliminary experimental data shows that this control scheme performs extremely well for driver assistance and closely matches simulation results, verifying previous theoretical guarantees for safety. These results also motivate future work which will focus on interaction with the driver.

Extension of Topological Improvement Procedures for Triangular Meshes (삼각격자에 대한 위상학적 개선과정의 확장)

  • Maeng, Ju-Seong;Han, Seok-Yeong;Choe, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.853-859
    • /
    • 2001
  • This paper describes the extended topological clean up procedures to improve the quality of unstructured triangular meshes. As a postprocessing step, topological improvement procedures are applied both for elements that are interior to the mesh and for elements connected to the boundary and then Laplacian-like smoothing is used by default. Previous clean up algorithms are limited to eliminate the nodes of degree 3,4,8,9,10 and pairs of nodes of degree 5. In this study, new clean up algorithms which minimize the triple connection structures combined with degree 5 and 7 (ie ; 5-7-5, 7-7-5, 7-5-7 etc) are added. The suggested algorithms are applied to two example meshes to demonstrate the effectiveness of the approach in improving element quality in a finite element mesh.

A Study on the Mechanical Properties and Shrinkage of Thermoplastic Elastomer (열가소성 엘라스토머의 기계적 물성과 수축에 관한 연구)

  • Han, S.R.;Kim, J.H.;Jeon, S.G.;Jeong, Y.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.1 s.91
    • /
    • pp.36-41
    • /
    • 2007
  • Thermoplastic elastomer(TPE) can be recycled and molded such as commercial thermoplastic. Therefore TPE has being widely applied on automobile, household and etc. in these days. This study shows the variation of mechanical properties and shrinkage on TPE moldings for variation of injection molding conditions such as injection pressure, holding pressure, melt temperature, mold temperature and etc. Mechanical properties in relation to tensile strength, hardness and shrinkage in connection with precision dimension of part are investigated. The tensile strength and shrinkage of the experimental TPEs are mainly influenced by injection pressure and melt temperature. All injection molding conditions scarcely affect on hardness. To verify the variation of tensile strength and shrinkage, morphology of TPE molding was scanned by the SEM. The morphology showed that as the melt temperature increased, the rubber particles on the TPE became smaller and widely were dispersed. This behavior of rubber particles influenced on the increase of tensile strength.

Robust Control of Robot Manipulator with Actuators

  • Jongguk Yim;Park, Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.320-326
    • /
    • 2001
  • A Robust controller is designed for cascaded nonlinear uncertain systems that can be decomposed into two subsystems; that is, a series connection of two nonlinear subsystems, such as a robot manipulator with actuators. For such systems, a recursive design is used to include the second subsystem in the robust control. The recursive design procedure contains two steps. First, a fictitious robust controller for the first subsystem is designed as if the subsystem had an independent control. As the fictitious control, a nonlinear H(sub)$\infty$ control using energy dissipation is designed in the sense of L$_2$-gain attenuation from the disturbance caused by system uncertainties to performance vector. Second, the actual robust control is designed recursively by Lyapunovs second method. The designed robust control is applied to a robotic system with actuators, is which the physical control inputs are not the joint torques, but electrical signals to the actuators.

  • PDF

QUASI-RESONANT ZVS-PWM DC-DC FORWARD CONVERTER WITH ACTIVE CLAMPED CAPACITOR FOR SOLAR PHOTOVOLTAIC ENERGY-DRIVEN BOAT SYSTEM

  • Kenya, Sakamoto;Masakazu, Kanaoka;Hidekazu, Muraoka;Ryuhei, Hojyo;Mutsuo, Nakaoka
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.68-73
    • /
    • 1998
  • This paper presents a novel prototype of active voltage clamped quasi-resonant ZVS-PWM forward DC-DC converter designed for specific low voltage high current application. We establish the soft-switching forward converter with a high frequency isolated link which can efficient operate over wide load ranges under conditions of zero voltage soft-switching and active voltage clamped switching. In addition, we evaluate connection of the soft-switching forward converter with large capacitor which capacitance is over 100[F].

  • PDF