• Title/Summary/Keyword: mechanical connection

Search Result 549, Processing Time 0.021 seconds

Stress Analysis of Pipe Connection Process Using Clamping Ring (구속 링을 이용한 관 결합 공정의 응력해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.81-87
    • /
    • 2017
  • The pipe connection process using a clamping ring is used for joining small pipes in the refrigerator and air-conditioner industries instead of the brazing process, which induces inevitable thermal deformation in the pipes. However, few studies have been carried out on the process to select optimal parameters in joining pipes, and studies on the relation between the process parameters of the connection and connecting force of the joint have not been conducted. In this study, the connection process of pipes with the clamping ring was modeled using the finite element method (FEM) and analyzed to obtain the contact stress distribution between the pipes with which the connecting force of the joint was estimated. Considering the characteristics of pipe connection, the process was modeled and simulated in a two-dimensional axisymmetric solution domain. With the numerical model, the effect of ring shape on the connection was studied by adding a projection to the end of a ring or changing the length of a ring. The results of the analyses revealed that the contact stress distribution could be predicted with the suggested model. The effect of the ring shape was also presented. The effect of any combination of process parameters could be easily estimated through the related analyses.

Experimental study on two types of new beam-to-column connections

  • Ma, Hongwei;Jiang, Weishan;Cho, Chongdu
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.291-305
    • /
    • 2011
  • The new structure consisting of continuous compound spiral hoop reinforced concrete (CCSHRC)column and steel concrete composite (SCC) beam has both the advantages of steel structures and concrete structures. Two types of beam-to-column connections applied in this structural system are presented in this paper. The connection details are as follows: the main bars in beam concrete pass through the core zone for both types of connections. For connecting bar connection, the steel I-beam webs are connected by bolts to a steel plate passing through the joint while the top and bottom flanges of the beams are connected by four straight and two X-shaped bars. For bolted end-plate connection, the steel I-beam webs are connected by stiffened extended end-plates and eight long shank bolts passing through the core zone. In order to study the seismic behaviour and failure mechanisms of the connections, quasi-static tests were conducted on both types of full-scale connection subassemblies and core zone specimens. The load-drift hysteresis loops show a plateau for the connecting bar connection while they are excellent plump for bolted end-plate connection. The shear capacity formulas of both types of connections are presented and the values calculated by the formula agree well with the test results.

Connections of sleeve joint purlin system

  • Tan, S.H.;Seah, L.K.;Li, Y.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • This paper presents the findings of an investigation carried out to determine the most appropriate connections, in terms of rotational stiffness, to use for the optimum design of cold-formed Zed section sleeve joint purlin system. Experiments and parametric studies were conducted to investigate the effects of geometric variables on the behavior of the sleeve-purlin and cleat-purlin connections of the sleeve joint purlin system. The variables considered were purlin size and thickness, sleeve size, thickness, length and bolt position. The test results were used to verify the empirical expressions, developed herein, employed to determine the rotational stiffness of connections. With the predicted connection stiffness, the most suitable sleeve-purlin and cleat-purlin connections can be selected so as to produce an optimum condition for the sleeve joint purlin system.

Characteristics of Injection Molding in Optical Fiber Splice Closure (광섬유 케이블 접속함체의 사출성형 특성 분석)

  • Choi, Jaeyoung;Hong, Minsung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.434-439
    • /
    • 2016
  • Optical fiber splice closure serves to protect connection parts from external environment. Moreover, it functions as a connection, junction, and distribution in diverse surroundings such as aerial, underground, duct, and pole. In this research, first, the optical fiber splice closure, its configuration, and the design problem were briefly investigated. Second, the design and application for in-line cable closure were studied to satisfy its construction and technical features. The injection molding conditions and optimal design were conducted to save time and cost during the manufacturing process. Third, methods to minimize loss via of optical fiber cable while strongly fixing optical fiber cable with optical cable holder to prevent fracture were researched, and tests such as perfect air tightness and mechanical and environmental performance were conducted.

The Crack Resistance and the Dielectric Breakdown properties of Epoxy Composities due to the Multi Stresses Variation (다중 응력 변화에 따른 에폭시 복합체의 내크랙성 및 절연 파괴 특성)

  • 송봉철;김상걸;안준호;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.136-139
    • /
    • 2000
  • Epoxy materials are used as insulation material for electric power cables. In the case of a flow of excess current due to the temperature difference which occurs between the heat of the conductor and the atmosphere, heat degrades connection point of the cables. Also, the mechanical stress, which occurs due to the thermal expansion coefficient of cable connection electrode system and epoxy insulation materials along with the gap between thermal conduction based on the extra high voltage of transmitted voltage, increases possibility of cracks to occur. The relationship between mechanical stress and electrical breakdown mechanism is verified for the epoxy materials such as high toughness epoxy materials, which comes to be used contemporarily, and for the breakdown mechanism of epoxy materials on the multi-stresses (mechanical and electrical) due to the variation of the temperature.

  • PDF

Effects of Coronal Thread Pitch in Scalloped Implant with 2 Different Connections on Loading Stress using 3 Dimensional Finite Element Analysis (연결부 형태가 다른 두 가지 scallop 임플란트에서 경부 나사선 피치가 응력 분포에 미치는 영향 : 삼차원적유한요소분석)

  • Choi, Kyung-Soo;Park, Seong-Hun;Lee, Jae-Hoon;Huh, Jung-Bo;Yun, Mi-Jung;Jeon, Young-Chan;Jeong, Chang-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • Purpose of present study is to investigate the effects of thread pitch in coronal portion in scalloped implant with 2 different connections on loading stress using 3 dimensional finite element analysis. Scalloped implant with 4 different thread pitches (0.4mm, 0.5mm, 0.6, and 0.7mm) in the coronal part was modeled with 2 different implant-abutment connections. Platform matching connection had the same implant and abutment diameter so that they were in flush contact at the periphery while platform mismatching connection had smaller abutment diameter than implant so that their connection was made away from periphery of implant-bone interface. Occlusal loading of 100N force was applied vertically and 30 degree obliquely to all 8 models and the maximum von Mises bone stress was identified. Loading stress as highly concentrated in cortical bone. Platform mismatching scalloped implant with small thread pitch (0.4mm) model had consistently lowest maximum von Mises bone stress in vertical and oblique loads. Platform matching model had lowest maximum von Mises bone stress with 0.6mm thread pitch in vertical load and with 0.4mm thread pitch in oblique load. Platform mismatching connection had important roles in reducing maximum von Mises bone stress. Scalloped implant with smaller coronal thread pitch showed trend of reducing maximum von Mises bone stress under load.

Vibration Analysis of Planar Cable-Driven Parallel Robot Configurations (평면형 케이블 구동 병렬로봇의 구조에 따른 진동분석)

  • Piao, Jinlong;Jung, Jinwoo;Jin, Xuejun;Park, Sukho;Park, Jong-Oh;Ko, Seong Young
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.73-82
    • /
    • 2016
  • This paper focuses on the vibration analysis of planar cable-driven parallel robots on their configurations. Despite of many advantages of the cable robots, elasticity of the cables may cause the vibration at the existence of external disturbance, resulting in deterioration of positioning accuracy. According to the vibration theory, having high first order natural frequency can prevent resonance with low frequency disturbance from the surrounding environment. A series of simulations showed that choosing frame / end-effector shape and cable connection method affects robots' natural frequency. For the precise simulation, the cables are modeled as linear springs and axial vibration of cables is mainly considered. Aspect ratios of the frame and end-effector are defined as non-dimensional parameters while their areas are fixed. It was shown that vibration analysis guides to design a planar cable robot in terms of high capacity to reduce vibration.

Development of Hybrid FRP-Concrete Composite Pile Connection (하이브리드 FRP-Concrete 복합말뚝의 연결부의 개발)

  • Lee, Hyoung-Kyu;Park, Joon-Seok
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.52-57
    • /
    • 2014
  • Due to the advantageous mechanical properties of the fiber reinforced polymeric plastics(FRP), their application in the construction industries is ever increasing trend, as a substitute of structural steel which is highly vulnerable under hazardous environmental conditions (i.e., corrosion, humidity, etc.). In this study, hybrid FRP-concrete composite pile (HCFFT) connection is suggested. The HCFFT is consisted of pultruded FRP unit module, filament wound FRP which is in the outside of mandrel composed of circular shaped assembly of pultruded FRP unit modules, and concrete which is casted inside of the circular tube shaped hybrid FRP pile. Therefore, pultruded FRP can increase the flexural load carrying capacity, filament wound FRP and concrete filled inside can increase axial load carrying capacity. In the study, connection capacity of HCFFT(small and mid size) is investigated throughout experiments and finite element method. From the results of experiments, we suggested the connection methods about HCFFT pile connection.

An Experimental Study on the Stability of IER according to the Head Connection Method (지주식흙막이의 두부 연결 방법에 따른 안정성에 관한 실험적 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Seo, Min-Su;Kim, Chang-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.45-57
    • /
    • 2016
  • The Inclined Earth Retaining Structure (IER) is the structure using an integrated system of both front supports and inclined back supports to increase the stability for excavation. The IER is a structurally stable temporary excavation method using the back supports restraining the lateral displacement of the front supports as stabilizing piles. The back supports connected to the front supports significantly reduce the earth pressure acting on both the front wall and the front supports by distributing it to the back supports in order to increase the structural stability. In this study, mechanical behaviors of IER according to the head connection type using fixed- or hinge-connection were found by performing numerical analysis and laboratory model tests in the sandy ground. The maximum lateral displacement of fixed-connection was 88% of that of hinge-connection in the numerical analysis. The lateral displacement of fixed-connection was 7% of that of hinge-connection in the laboratory model test results. Furthermore, the earth pressure of the fixed-connection was 67% of that of the hinge-connection in the shear-strain analysis results of the model ground.

Nonlinear finite element modelling of centric dowel connections in precast buildings

  • Zoubek, Blaz;Fahjan, Yasin;Fischinger, Matej;Isakovic, Tatjana
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.463-477
    • /
    • 2014
  • The modelling approach in the case of connections in precast buildings is specific. The assembly of the constitutive parts of the connection requires the inclusion of contact definitions in the model. In addition, the material non-linearity including the influence of the spatial stress distribution should be taken into account where appropriate. Here a complex model of a beam-to-column dowel connection is presented. Experiments on the analysed connection were performed within the framework of the European project SAFECAST (Performance of Innovative Mechanical Connections in Precast Building Structures under Seismic Conditions). Several material and interaction parameters were investigated and the influence of each of them was evaluated. The set of parameters which gave the best match with the experiments was chosen.