• 제목/요약/키워드: mechanical characteristics

검색결과 15,686건 처리시간 0.04초

인벌류우트-圓弧 合成齒形의 諸特性 (Mechanical characteristics of involute-circular arc composite tooth profile)

  • 변준형;최상훈;윤갑영
    • 대한기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.870-875
    • /
    • 1986
  • 본 연구에서는 랙의 이끝부분을 full-rounded tip으로 설계한 후, 이에 의하 여 창성되는 피니언의 이뿌리곡선을 구하여 전체치형을 완성하였다. 그리고 합성치 형기어의 미끄름율, 유효이뿌리원에서의 공칭굽힘응력과 두쌍접촉호의 길이대 원호부 분접촉호의 길이의 비인 접촉계수를 해석적인 방법으로 구하였다.또한 이들 특성들 과 물림율등 제특성을 비교.검토하여 공구압력각, 인벌류우트부분의 크기를 나타내는 물림각 및 원호반경등의 변화에 대한 제특성의 변화를 고려한 합성치형의 성능을 향상 시킬 수 있는 설계방법을 구하였으며, 합성치형과 표준인버류우트치형을 비교하였다.

형광증백제가 종이의 열화 특성에 미치는 영향 (Effects of Optical Brightening Agents on Aging Characteristics of Paper)

  • 최경화;이재훈;조병욱
    • 펄프종이기술
    • /
    • 제46권6호
    • /
    • pp.87-93
    • /
    • 2014
  • Optical brightening agents (OBA) is generally used to improve the optical property of printing paper in the paper industry. However, effects of OBA addition on paper preservability has been not fully understood yet. Therefore, this study was aimed to investigate effects of a OBA on the aging characteristics of paper. The OBA treatment of three different types was performed by dipping a filter paper into each a OBA solutions of different concentrations. The filter papers applied with a OBA were artificially aged at 80oC and 65% RH, and their optical and mechanical properties were evaluated. It was found that application of OBAs influenced the aging characteristics of paper. Especially, after aging, the optical and mechanical properties of the filter paper treated with the tetra-type OBA were more significantly decreased than those of the non-treated filter paper. The more the concentration of the tetra-type OBA increased, the more decreasing rate of optical and mechanical properties of the filter paper. While, in case of di-type OBA and hexa-type OBA, paper optical and mechanical properties were slightly decreased or not changed with a OBA treatment.

AMESim기반 피에조 인젝터용 해석모델의 민감도 특성 해석 (Analysis of Sensitivity Characteristics with AMESim Model for Piezo Injector)

  • 조인수;권지원;이진욱
    • 한국자동차공학회논문집
    • /
    • 제21권2호
    • /
    • pp.17-25
    • /
    • 2013
  • Performance of DI diesel engine with high fuel injection method is directly related to the emission characteristics and fuel consumption. At present, diesel injection system with piezo element is replacing conventional solenoid type due to their faster electro-mechanical properties. In this study, it was investigated the sensitivity characteristics regarding internal hydraulic modeling based on the AMESim environment of piezo-driven injector The analytic parameter for this study defined such as In/Out orifice, injection hole's diameter and driven voltage on piezo stack. As the results, it was shown that these parameter influence on a fast response characteristics of piezo-driven injector. Also we found fuel pressure recovery time is faster about 0.1 ms due to larger IN orifice diameter. And larger OUT orifice diameter occurs maximum pressure drop with faster its timing of about 0.2 ms.

Effect of the Injection Parameters on Diesel Spray Characteristics

  • Song Kyu Keun;Sim Sang Cherl;Jung Byong Koog;Kim Hyung Gon;Kim Jang Heon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권6호
    • /
    • pp.1321-1328
    • /
    • 2005
  • The characteristics of the diesel spray have affected certain aspects of engine performance, such as the power, fuel consumption, and emissions. Therefore, this study was performed to investigate the effects of various injection parameters. In order to obtain the effect of injection parameters on diesel spray characteristics, the experiment is performed by using a high temperature and pressure chamber. The behaviors of the spray are visualized by using a high speed video camera, spray angle, penetration, and various other things. The results of the experiment are summarized as follows. (1) The correlation of the spray penetration can be expressed as follows. $$0< t $$t_{b} (2) The correlation of the spray angle can be expressed as follows $$T_a=293K\;tan({\theta}/2)=0.59({\rho}a/{\rho}f)^{0.437}$$ $$T_a=473K\;tan({\theta}/2)=0.588({\rho}a/{\rho}f)^{0.404}$$ (3) The measured macro characteristics that include the spray tip penetration and spray angle corresponded with the established correlations.

노후 기계식 인젝터의 분무특성 연구 (A Study on Spray Characteristics of Deteriorated Mechanical Injectors)

  • 정민욱;유영수;양승호;최민후;박성욱
    • 한국분무공학회지
    • /
    • 제26권3호
    • /
    • pp.111-119
    • /
    • 2021
  • Deteriorated agricultural diesel engines using mechanical fuel injection systems have low fuel injection pressures. And they are not equipped with an exhaust gas abatement device, so it produces a lot of exhaust gas. Remanufactured used injectors can reduce emissions because spray characteristics are improved. In addition, remanufacturing is environmentally friendly and economical compared to producing new parts. For efficient injector remanufacturing, it is necessary to conduct a comparison experiment on the spray characteristics of an used mechanical injector and a new injector of the same model. In this study, the spray characteristics of the two injectors were compared by performing an injection quantity measurement and a spray visualization experiment. As a result, the used injector had a larger injection quantity, a shorter spray tip penetration, a wider spray angle and a smaller spray area than the new injector.

An Image Quality Evaluation Model for Optical Strip Signal-to-Noise Ratio in the Target Area of High Temperature Forgings

  • Ma, Hongtao;Zhao, Yuyang;Feng, Yiran;Lee, Eung-Joo;Tao, Xueheng
    • Journal of Multimedia Information System
    • /
    • 제8권2호
    • /
    • pp.93-100
    • /
    • 2021
  • Under the time-varying temperature, the high-temperature radiation of forgings and the change of reflection characteristics of oxide skin on the surface of forgings lead to the difficulty of obtaining images to truly reflect the geometric characteristics of forgings. It is urgent to study the clear and reliable acquisition method of hot forging feature image under time-varying temperature to meet the requirements of visual measurement of hot geometric parameters of forgings. Based on this, this chapter first puts forward the quality evaluation method of forging feature image, which provides guarantee for the accurate evaluation of feature image quality. Furthermore, the factors that affect the image quality, such as the radiation characteristics of forgings and the photographic characteristics of cameras, are analyzed, and the imaging spectrum which can effectively suppress the radiation intensity of forgings is determined. Finally, aiming at the problem that the quality of image acquisition is difficult to guarantee due to the drastic change of radiation intensity of forgings under time-varying temperature, an image acquisition method based on minimum signal-to-noise ratio (SNR) based laser light intensity adaptation is proposed, which significantly improves the definition of feature light strips in forging images at high temperature, and finally realizes the clear acquisition of feature images of large-scale hot forging under time-varying temperature.

기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석 (Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts)

  • 김단아;이광규;안동규
    • 소성∙가공
    • /
    • 제30권3호
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

이미지 데이터를 이용한 익형 매개변수화 및 공력계수 예측을 위한 인공지능 모델 연구 (Study of an AI Model for Airfoil Parameterization and Aerodynamic Coefficient Prediction from Image Data)

  • 이승훈;김보라;이정훈;김준영;윤민
    • 한국가시화정보학회지
    • /
    • 제21권2호
    • /
    • pp.83-90
    • /
    • 2023
  • The shape of an airfoil is a critical factor in determining aerodynamic characteristics such as lift and drag. Aerodynamic properties of an airfoil have a decisive impact on the performance of various engineering applications, including airplane wings and wind turbine blades. Therefore, it is essential to analyze the aerodynamic characteristics of airfoils. Various analytical tools such as experiments, computational fluid dynamics, and Xfoil are used to perform these analyses, but each tool has its limitation. In this study, airfoil parameterization, image recognition, and artificial intelligence are combined to overcome these limitations. Image and coordinate data are collected from the UIUC airfoil database. Airfoil parameterization is performed by recognizing images from image data to build a database for deep learning. Trained model can predict the aerodynamic characteristics not only of airfoil images but also of sketches. The mean absolute error of untrained data is 0.0091.

Mechanical Characteristics of Nano-Structured Tool Steel by Ultrasonic Cold Forging Technology

  • Suh, Chang-Min;Song, Gil-Ho;Suh, Min-Soo;Pyoun, Young-Shik;Kim, Min-Ho
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.35-40
    • /
    • 2006
  • Ultrasonic cold forging technology (UCFT) utilizing ultrasonic vibration energy is a method to induce severe plastic deformation to a material surface, therefore the structure of the material surface becomes a nano-crystal structure from the surface to a certain depth. It improves the mechanical properties; hardness, compressive residual stress, wear and fatigue characteristics. Applying UCFT to a rolling process in the steel industry is introduced in this study. First, the UCFT specimens of a tool steel (SKD-61/equivalent H13) are prepared and tested to verify the effects of the UCFT in a variety of mechanical properties, the UCFT is applied to the trimming knives in a cold rolling process. It has been determined that UCFT improves the mechanical properties effectively and becomes a practical method to improve productivity and reliability by about two times compared with the conventionally treated tooling in the trimming process in a cold rolling line.

  • PDF

마이크로 구조를 가진 패드를 이용한 MEMS CMP 적용에 관한 연구 (A study on the application of MEMS CMP with Micro-structure pad)

  • 박성민;정석훈;정문기;박범영;정해도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.481-482
    • /
    • 2006
  • Chemical-mechanical polishing, the dominant technology for LSI planarization, is trending to play an important function in micro-electro mechanical systems (MEMS). However, MEMS CMP process has a couple of different characteristics in comparison to LSI device CMP since the feature size of MEMS is bigger than that of LSI devices. Preliminary CMP tests are performed to understand material removal rate (MRR) with blanket wafer under a couple of polishing pressure and velocity. Based on the blanket CMP data, this paper focuses on the consumable approach to enhance MEMS CMP by the adjustment of slurry and pad. As a mechanical tool, newly developed microstructured (MS) pad is applied to compare with conventional pad (IC 1400-k Nitta-Haas), which is fabricated by micro melding method of polyurethane. To understand the CMP characteristics in real time, in-situ friction force monitoring system was used. Finally, the topography change of poly-si MEMS structures is compared according to the pattern density, size and shape as polishing time goes on.

  • PDF