• Title/Summary/Keyword: mechanical behaviors

Search Result 1,730, Processing Time 0.021 seconds

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Molecular Dynamics Simulation of Friction and Wear Behavior Between Carbon and Copper (탄소와 구리의 마찰 및 마모에 관한 분자 동역학 시뮬레이션)

  • Kim Kwang-Seop;Kang Ji-Hoon;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, friction and wear behaviors between monocrystalline, defect-free copper and carbon on the atomic scale are investigated by using 2-dimensional molecular dynamics simulation. It is assumed that all interatomic forces are given by Morse potential. The deformation of carbon is assumed to be neglected and vacuum condition is also assumed. Average friction and normal forces for various surface conditions, various scratch speeds and scratch depths are obtained from simulations. Changes of wear behaviors for various scratch speeds and surface conditions are investigated by observing snapshots in scratch process. The effects of surface conditions, scratch speeds, and scratch depths on the friction force, normal force, and friction coefficient are also investigated.

Finite Element Analysis on the Thermal Behaviors of Non-Contact Type Mechanical Seals Depending on Contacting Face Geometry (접촉면 형상에 따른 비접촉식 기계시일의 열거동 특성에 관한 유한요소해석)

  • Cho, Seung-Hyun;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • This paper presents the contact thermal behaviors of mechanical seals depending on the contacting face geometry. Using the finite element analysis, the temperature distribution, thermal distortion and leakage have been analyzed as functions of sealing gap and rotating speed of the seal ring shaft. The FE results indicate that the inclined contacting face may be more effective and stable based on the results of thermal characteristic analysis if the seal ring has been designed with a same thermal capacity between conventional rectangular sealing faces and inclined seating surface of seal rings.

Study on the Elliptical Elastohydrodynamic Lubrication in the Toroidal Continuously Variable Transmission (가변 동력전달 장치에서의 타원 형상 점접촉 탄성유체윤활 연구)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.310-315
    • /
    • 2001
  • The most general feature of contact zone among the mechanical components is elliptical circle. In particular, continuously variable transmission (CVT) of toroidal type has elliptical shape of contact zone under the elastohydrodynamic lubrication condition, where the power is transmitted by the shearing the efluid. Due to the traction of the shear behaviors of lubricant over the small elliptical contact zone, high power of torque is transmitted. During the power transmission, many kinds of mechanical movements occur such as squeezing, sliding, rolling and spinning. The spinning effect that is not common contact behavior in tribological components frequently makes significant abnormal wear damage. In this work, the analysis of elliptical contact of elastohydrodynamic lubrication with spin effect is performed, which will give very useful information to understand the traction behaviors in toroidal type of CVT system.

  • PDF

Feasibility Analysis of Simulation on the Mechanical Properties of Neutron Irradiated Austenitic Stainless Steels by Cold-working (냉간가공을 통한 중성자조사된 오스테나이트 스테인리스강의 기계적물성 모사 타당성 분석)

  • Kim, Jin Weon;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2019
  • The objective of this study is to investigate the feasibility of simulating the mechanical properties of irradiatied austenitic stainless steels by cold-working. In this study, the tensile properties, cyclic hardening behaviors and fracture toughness of cold-worked TP316L stainless steel were compared with those of austenitic stainless steels irradiated by neutrons. It showed that cold-working can properly simulate the increase in strength and the decrease in ductility and fracture resistance of austenitic stainless steels by neutron irradiation, even though it could not perfectly simulate the microstructures of irradiated austenitic stainless steels. Also, cold-working can appropriately simulate the hardening behaviors of neutron irradiated austenitic stainless steels under monotonic and cyclic loading conditions.

A comparative study on thermal, mechanical and dielectric characteristics of low density polyethylene crosslinked by radiation and chemical methodes (화학적방법과 방사선으로 가교된 저밀도 폴리에티렌의 열적 기계적 및 유전적 특성의 비교연구)

  • 김봉흡;강도열;김정수
    • 전기의세계
    • /
    • v.25 no.2
    • /
    • pp.100-106
    • /
    • 1976
  • A comparative study on thermal, static mechanical and dielectric characteristics were made over a temperature range of ca.20.deg.C to 320.deg.C and a frequency range of KHZ to MHZ band on low density polyethylene specimens crosslinked, respectively, by radiation and chemical method. The thermal property of both specimens shows that softening point appears to unchange by crosslinking, however, melting and liquidizing temperatures attain rapid increase at the imitiation of crosslinking. Mechanical properties show little difference to both specimens crosslinked by different method, further the behaviors were discussed in connection with the relaxation of molecular segments in amorphous phase. Dose dependent dielectric characteristics observed at ambient temperature under several fixed frequencies exhibit extremities at ca. 20 Mrad and the behaviors also were interpreted qualitatively by taking into consideration of dipole concentration change in amorphous phase together with the role of specimen geometry to the depth of oxidative layer. Observing frequency dependent dielectric characteristics, it was also proved that ionic conduction loss is appreciably greater in the specimen prepared by chemical method than that by radiation.

  • PDF

Finite element analysis in static and dynamic behaviors of dental prosthesis

  • Djebbar, N.;Serier, B.;Bouiadjra, B. Bachir
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.65-78
    • /
    • 2015
  • In recent years, implants have gained growing importance in all areas of medicine. The success of the treatment depends on many factors affecting the bone-implant, implant-abutment and abutment-prosthesis interfaces. In this paper, static and dynamic behaviors of the dental prosthesis are investigated. Three-dimensional finite element models of dental prosthesis were constructed. Dynamic loads in 5 sec applied on occlusal surface. Therefore, FEA was selected for use in this study to examine the effect of the static and dynamic loads on the stress distribution for an implant-supported fixed partial denture and supporting bone tissue.

Dynamic characteristic analysis of a military vehicle using radar via road tests (레이더 차량의 주행시험을 통한 동특성 분석)

  • Park, Jong-beom;Lee, Sang jeong;Park, No-Cheol;Lee, Jong-Hak
    • Transactions of the Society of Information Storage Systems
    • /
    • v.11 no.2
    • /
    • pp.26-30
    • /
    • 2015
  • Recently, military vehicles are driven with a lot of electronic devices such as radar, antenna, and information storage devices. However, the military vehicles can be exposed to impact easily. Therefore, they have to be designed robustly in order to ensure the stability of the vehicle and the electronic devices. To achieve that, the dynamic behaviors of the military vehicle should be exactly identified. Therefore, in this research, dynamic behaviors of the vehicles were identified by carrying out road tests and we constructed finite element model to analyze the dynamic characteristics of the vehicle.

Numerical simulations of elliptic particle suspensions in sliding bi-periodic frames

  • Chung, Hee-Taeg;Kang, Shin-Hyun;Hwang, Wook-Ryol
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.4
    • /
    • pp.171-180
    • /
    • 2005
  • We present numerical results for inertialess elliptic particle suspensions in a Newtonian fluid subject to simple shear flow, using the sliding bi-periodic frame concept of Hwang et al. (2004) such that a particulate system with a small number of particles could represent a suspension system containing a large number of particles. We report the motion and configurational change of elliptic particles in simple shear flow and discuss the inter-relationship with the bulk shear stress behaviors through several example problems of a single, two-interacting and ten particle problems in a sliding bi-periodic frame. The main objective is to check the feasibility of the direct simulation method for understanding the relationship between the microstructural evolution and the bulk material behaviors.

Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porosity-dependent homogenization scheme

  • Ebrahimi, Farzad;Dabbagh, Ali;Rabczuk, Timon;Tornabene, Francesco
    • Advances in nano research
    • /
    • v.7 no.2
    • /
    • pp.135-143
    • /
    • 2019
  • The important effect of porosity on the mechanical behaviors of a continua makes it necessary to account for such an effect while analyzing a structure. motivated by this fact, a new two-step porosity dependent homogenization scheme is presented in this article to investigate the wave propagation responses of functionally graded (FG) porous nanobeams. In the introduced homogenization method, which is a modified form of the power-law model, the effects of porosity distributions are considered. Based on Hamilton's principle, the Navier equations are developed using the Euler-Bernoulli beam model. Thereafter, the constitutive equations are obtained employing the nonlocal elasticity theory of Eringen. Next, the governing equations are solved in order to reach the wave frequency. Once the validity of presented methodology is proved, a set of parametric studies are adapted to put emphasis on the role of each variant on the wave dispersion behaviors of porous FG nanobeams.