• Title/Summary/Keyword: mechanical and physical properties

Search Result 1,938, Processing Time 0.047 seconds

Effects of Polyurethane Coatings on 304 Stainless Steel Formed by Thermoset for Safety Management of Industrial Disaster (산업 재해의 안전관리를 위한 열경화에 의한 304 스테인레스 스틸에 대한 폴리우레탄 도료의 영향)

  • Kim, Ki-Jun;Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.317-322
    • /
    • 2012
  • The microstructures were examined by SEM, FT-IR spectra, tensible properties mole % of [NCO/OH], and particle size analyzer. Growing concerns in the environment-friendly industries have led to the development of solvent-free formulations that can be cured. We had synthesized the polyurethane resin having the ability to protect stainless steel against corrosion. Compared with general packing materials and coatings, this resin is highly stronger in intensity and longer durability. Polyurethane resins were composed of polyols, IPDI, silicone surfactant, catalyst and crosslink agent. Moreover, thermal fillers such as $Al_2O_3$, fume silica and $ZrO_2$ not only accelerated the curing rate but also improved the physical property as thermal barriers. The rigid segments of polyurethane in mechanical properties were due to crosslink agent and the increase of [NCO/OH]. In conclusion, the polyurethane microstructure with crosslink agent can be good material for themoset coating of metal substrates such as stainless steel.

Influence of Molecular Weight and Structure on the Physical Properties of the Vinylester Resin (비닐에스테르 수지의 구조 및 분자량이 물성에 미치는 영향)

  • Hong, Suk-Pyo;Choi, Sang-Goo;You, Kil-Sang
    • Applied Chemistry for Engineering
    • /
    • v.3 no.2
    • /
    • pp.318-326
    • /
    • 1992
  • Vinylester resin was synthesized by reacting epoxy resin with MAA(methacrylic acid) at a equivalent ratio of 1.1/1.0 in the presence of N,N dimethyl benzylamine. Low molecular weight epoxy(DER 331) was used together with higher molecular weight epoxy(DER 662, DER 664) and a novolac epoxy(DEN 439), and the amount of DER 331 was not over 50% of the total epoxy components. Viscosity, cure time and mechanical properties of the vinylester resin were profoundly influenced by the quantity of reacted MAA, and the structure and molecular weight of the epoxy resin. Tensile and flexural strength appeared to be the greatest when DER 331 fraction was 30~40%.

  • PDF

A Study on the PP/PS Blends with Nylon 6 Reactive Compatibilizers (Nylon6계 반응 상용화제에 의한 PP/PS 블렌드에 관한 연구)

  • 서성식;이기윤;김성희;김동철;이승구
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.71-79
    • /
    • 2002
  • RPP(maleic-anhydride grafted PP)and OPS(oxazoline grafted PS) do not react to each other, and thus show immiscibility. In this study, Nylons was added to RPP/OPS blend systems, as a reactive compatibilizer for enhancing the miscibility of the blends. When Nylon6 was added to the blends of RPP and OPS, RPP/Nylon6/OPS was produced. The effects of the molar ratio of Nylon6 on the RPP-Nylon6-OPS reaction were studied. Torque test and FT-IR analysis have been carried out to investigate the reaction of RPP/Nylon6/OPS system. The reaction torgue ratio and reaction efficiency show the maximum values at 1 : 0.66 : 1 and 1 : 1 : 1 (in moles) for RPP/Nylon6/OPS. In the RPP/Nylon6/OPS blends, their mechanical properties were changed with the molar ratio of Nylon6 and showed the highest value at molar ratio of 1.5. Physical properties and compatibility of RPP/Nylon6/OPS were compared with those of PP/Nylon6/OPS. Consequently, RPP/Nylon6/OPS plays a proper role as a reactive compatibilizer to the PP/PS blend system.

Effect of Formability of Physical Properties of Polyester/Melamine Cured Coating Using Polycarbonate Diol with Various Molecular Weight (폴리카보네이트 분자량이 폴리에스터/멜라민 경화형도료의 도막 성형성 및 물성에 미치는 영향)

  • Lee, Yong-Hee;Moon, Je-Ik;Kim, Hyun-Joong;Lee, Jae-Young;Noh, Seung Man;Nam, Joon Hyun
    • Journal of Adhesion and Interface
    • /
    • v.12 no.4
    • /
    • pp.105-110
    • /
    • 2011
  • Polyester/melamine cured coatings had been used for pre-primed coatings and pre-coated metal coatings, because it has good mechanical,chemical properties, and mar resistance. But it has weak points such as stiffness and low formability for making automotive components. Polyester had been synthesized using polycarbonate diol of long alkyl chain which can improve flexibility and formability which is one of the important factors for pre-coated steel sheets (PCM). In this study, strain and tensile strength were examined by the tensile test and formability was examined by the drawing test. Also, Those polyester resins were also measured by DMA to verify flexibility of cured coatings.

Reactivity Improvement Characteristics of Weathered Feldspar through Activation Technique (활성기법을 통한 풍화된 장석의 반응성 개선 특성)

  • Cho, Jinwoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.33-41
    • /
    • 2021
  • Feldspar, along with Quartz, are the most frequently produced minerals in Korea; however, the potential value is estimated to be significantly low because of the scarce research on the development and application of material properties, except for their limited use in manufacturing minerals, glass, and paints. In this study, we analyzed the eco-friendly material and reactivity improvement characteristics of weathered feldspar through activation technique. The joint structural features observed on the surface of the weathered feldspar show that the joint arrangements are irregularly distributed, and the cavities are interconnected. Due to the irregularly connected cavities on the surface of weathered feldspar, the reaction area of the weathered feldspar is increased; hence the weathered feldspar is considered as a highly reactive pozzolan material when combined with cement. As a result of applying the thermal, mechanical, and chemical activation techniques to improve the functionality of the weathered feldspar, the cation exchange capacity, density, and uniaxial compression strength characteristics were improved. It is considered that weathered feldspar by these porous characteristics can be used as an eco-friendly construction material with excellent physical and chemical properties.

An Analytic Study on Laminar Film Condensation along the Interior Surface of a Cave-Shaped Cavity of a Flat Plate Heat Pipe

  • Lee, Jin-Sung;Kim, Tae-Gyu;Park, Tae-Sang;Kim, Choong-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.966-974
    • /
    • 2002
  • An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10∼15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψ$\_$crit/=3∼7%, Ψ$\_$crit/=0.5∼1.3% respectively, in the range of heat flux q"=5∼90kW/㎡.

A Theoretical Study on Interface Characteristics of SiC Particulate Reinforced Metal Matrix Composite Using Ultrasonics (초음파를 이용한 입자강화 금속복합재료의 계면특성에 관한 이론적 연구)

  • Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.9-17
    • /
    • 1994
  • It is well recognized recently that ultrasonic technique is one of the most widely used methods of nondestructive evaluation to characterize material properties of nonconventional engineering materials. Therefore it is very important to understand physical phenomenon on propagation behavior of elastic wave in these materials, which is directly associated with ultrasonic signals in the test. In this study, the theoretical analysis on multi-scattering of harmonic elastic wave due to the particulate with interface between matrix and fiber in metal matrix composites(MMCs) was done on the basis of Lax's quasi-crystalline approximation and extinction theorem. SiC particulate (SiCp) reinforced A16061-T6 composite material was chosen for this analysis. From this analysis, frequency dependences of phase velocity and amplitude attenuation of effective plane wave due to the change of volume fraction of SiC particulate were clearly found. It was also shown that the interface condition between matrix and fiber in MMCs gives a direct effect on the variation of phase velocity of plane wave in MMCs.

  • PDF

Performance of Natural Circulation Hot Water System with Flat-Plate Solar Collectors (평만형 태양열 집열기 를 설치한 자연 순환식 급탕시스템 의 성능 에 관한 연구)

  • 윤석범;전문헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.579-589
    • /
    • 1985
  • The storage tank of the natural-circulation-solar-hot-water system equipped with flat-plate solar collectors is located at higher elevation than the solar collectors. Therefore, the heat loss from the system due to a reversed flow during the night-time is an important factor as well as the day-time thermal performance of the system. The thermal performance of the natural-circulation-solar-hot-water system with flat-plate solar collectors during the day-time depends mainly on the heat collecting efficiency of the solar collectors, whereas its thermal performance during the night-time depends on the system configuration , such as the elevation of the water storage tank with respect to the solar collectors and the piping connections between the storage tank and the solar collectors, as well as thermo-physical properties of the circulating fluid. In the present work, a computer program has been developed to simulate a typical natural-circulation-solar-hot-water-system, and a series of simulation tests have been carried out with the computer program to examine the thermal performance of the system during the day-time as well as the hight-time. In addition , a series of experiment have been conducted under a real sun condition using a natural-circulation-solar-hot-water-system constructed and installed at the KAIST building to compare with the results obtained from computer simulations.

Thermal and Chemical Quenching Phenomena in a Microscale Combustor (II)- Effects of Physical and Chemical Properties of SiOx(x≤2) Plates on flame Quenching - (마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (II)- SiOx(x≤2) 플레이트의 물리, 화학적 성질이 소염에 미치는 영향 -)

  • Kim Kyu-Tae;Lee Dae-Hoon;Kwon Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.5 s.248
    • /
    • pp.405-412
    • /
    • 2006
  • In order to realize a stably propagating flame in a narrow channel, flame instabilities resulting from flame-wall interaction should be avoided. In particular flame quenching is a significant issue in micro combustion devices; quenching is caused either by excessive heat loss or by active radical adsorptions at the wall. In this paper, the relative significance of thermal and chemical effects on flame quenching is examined by means of quenching distance measurement. Emphasis is placed on the effects of surface defect density on flame quenching. To investigate chemical quenching phenomenon, thermally grown silicon oxide plates with well-defined defect distribution were prepared. ion implantation technique was used to control defect density, i.e. the number of oxygen vacancies. It has been found that when the surface temperature is under $300^{\circ}C$, the quenching distance is decreased on account of reduced heat loss; as the surface temperature is increased over $300^{\circ}C$, however, quenching distance is increased despite reduced heat loss effect. Such abberant behavior is caused by heterogeneous surface reactions between active radicals and surface defects. The higher defect density, the larger quenching distance. This result means that chemical quenching is governed by radical adsorption that can be parameterized by oxygen vacancy density on the surface.

Experimental Study on Surface Impact Behavior Changes of Photocurable Hydrogel Droplets According to Exposure Conditions (광경화성 하이드로겔 액적의 노광 조건에 따른 표면 충돌 거동 변화에 대한 실험적 연구)

  • Lee, Sanghyun;Kang, Dong Kwan;Lee, Sangmin
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.308-312
    • /
    • 2022
  • 3D printing technology, which creates a physical object by various material deposition, has been widely used in recent years in the manufacturing field because of its advantages. Among the various printing technologies, droplet-based 3D printing technology (e.g., Polyjet®) enables a high-resolution printing using photocurable materials such as hydrogels. Depending on the degree of light exposure, ejected photocurable droplets may have different properties (e.g., viscosity) until they collide with the substrate and it leads to the different spreading behaviors of the droplets (i.e., impact, spreading, and recoiling) during deposition on the substrate. In this study, experimental observation and analysis of the changes in hydrogel droplet viscosity and spreading behavior according to the light exposure were carried out based on high-speed image processing.