DOI QR코드

DOI QR Code

Experimental Study on Surface Impact Behavior Changes of Photocurable Hydrogel Droplets According to Exposure Conditions

광경화성 하이드로겔 액적의 노광 조건에 따른 표면 충돌 거동 변화에 대한 실험적 연구

  • Lee, Sanghyun (Test & System Package, Samsung Electronics) ;
  • Kang, Dong Kwan (Division of Mechanical, Automotive, Robot Component Engineering, Dong-Eui University) ;
  • Lee, Sangmin (Division of Mechanical, Automotive, Robot Component Engineering, Dong-Eui University)
  • 이상현 (삼성전자) ;
  • 강동관 (동의대학교 기계자동차로봇부품공학부) ;
  • 이상민 (동의대학교 기계자동차로봇부품공학부)
  • Received : 2021.12.23
  • Accepted : 2022.01.24
  • Published : 2022.05.01

Abstract

3D printing technology, which creates a physical object by various material deposition, has been widely used in recent years in the manufacturing field because of its advantages. Among the various printing technologies, droplet-based 3D printing technology (e.g., Polyjet®) enables a high-resolution printing using photocurable materials such as hydrogels. Depending on the degree of light exposure, ejected photocurable droplets may have different properties (e.g., viscosity) until they collide with the substrate and it leads to the different spreading behaviors of the droplets (i.e., impact, spreading, and recoiling) during deposition on the substrate. In this study, experimental observation and analysis of the changes in hydrogel droplet viscosity and spreading behavior according to the light exposure were carried out based on high-speed image processing.

3D 프린팅 기술은 다양한 재료를 적층하여 구조물을 제작할 수 있으며, 다양한 장점을 바탕으로 최근 제조분야에 널리 활용되고 있다. 특히 고해상도의 액적 기반 3D 프린팅 기술은 주로 광경화성 물질을 사용하여 액적을 증착해 나가며 최종 구조물을 형성한다. 물질의 광경화 특성으로 인해 프린팅 과정에서 발생할 수 있는 빛 노출에 따라 액적의 물성 및 증착 특성이 달라질 수 있다. 이에 본 연구에서는 광경화성 하이드로겔 액적의 빛에너지 조사 조건에 따른 액적의 점도변화 및 표면과의 퍼짐 거동에 관해 실험적으로 관찰 및 분석을 수행하였다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2020R1F1A1050735).

References

  1. Ngo, T. D., Kashani, A., Imbalzano, G., Nguyen, K. T. Q. and Hui, D., "Additive Manufacturing (3D printing): A Review of Materials, Methods, Applications and Challenges," Compos. B. Eng., 143, 172-196(2018). https://doi.org/10.1016/j.compositesb.2018.02.012
  2. Bae, S. J. and Im, D. J., "Comparison of Surface Characteristics According to 3D Printing Methods and Materials for the Fabrication of Microfluidic Systems," Korean Chem. Eng. Res., 57(5), 706-713(2019). https://doi.org/10.9713/kcer.2019.57.5.706
  3. Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., Liu, C., Li, Y., Wang, P., and He, Y., "3D Printing of Ceramics: A Review", J. Eur. Ceram. Soc., 39(4), 661-687(2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
  4. Wang, X., Jiang, M., Zhou, Z., Guo, J. and Hui, D., "3D Printing of Polymer Matrix Composites: A Review and Prospective," Compos. B. Eng., 110, 442-458(2017). https://doi.org/10.1016/j.compositesb.2016.11.034
  5. Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q. and Shi, Y., "A Review of 3D Printing Technology for Medical Applications," Engineering, 4(5), 729-742(2018). https://doi.org/10.1016/j.eng.2018.07.021
  6. Park, Y.-S., Lee, J.-Y. and Kang, S.-K., "3D Printed Electronics Research Trend," J. Microelectron. Electron. Packag., 28(2), 1-12(2021).
  7. Murphy, S. V. and Anthony, A., "3D Bioprinting of Tissues and Organs," Nat. Biotechnol., 32(8), 773-785(2014). https://doi.org/10.1038/nbt.2958
  8. Eom, T. Y., "3D Bioprinting Technology in Biochemical Engineering," Korean Chem. Eng. Res., 54(3), 285-292(2016). https://doi.org/10.9713/kcer.2016.54.3.285
  9. Lim, J., Kim, Y. K., Won, D. J., Choi, I. H., Lee, S. and Kim, J., "3D Printing of Freestanding Overhanging Structures Utilizing An In Situ Light Guide," Adv. Mater. Technol., 4(8), 1900118(2019). https://doi.org/10.1002/admt.201900118
  10. Lim, J., Lee, S. and Kim, J., "Structural Dimensions Depending On Light Intensity in a 3D Printing Method That Utilizes in situ Light as a Guide," Micro Nano Syst. Lett., 8, 1-5(2020). https://doi.org/10.1186/s40486-019-0101-x
  11. Kim, H., Lee, S., Lee, C., Kim, M. H. and Kim, J., "Fabrication of a Micro/Nano-scaled Super-water-repellent Surface and Its Impact Behaviors of a Shooting Water Droplet," J. Korean Soc. Precis., 19(9), 1020-1025(2012).
  12. Zhao, B., Wang, X., Zhang, K., Chen, L. and Deng, X., "Impact of Viscous Droplets on Superamphiphobic Surfaces," Langmuir, 33(1), 144-151(2017). https://doi.org/10.1021/acs.langmuir.6b03862
  13. Raiyan, A., Mclaughlin, T. S., Annavarapu, R. K. and Sojoudi, H., "Effect of Superamphiphobic Macrotextures on Dynamics of Viscous Liquid Droplets," Sci. Rep., 8(1), 1-14(2018).