• Title/Summary/Keyword: mechanical and overall efficiency

Search Result 200, Processing Time 0.041 seconds

Independent Metering Valve: A Review of Advances in Hydraulic Machinery

  • Nguyen, Thanh Ha;Do, Tri Cuong;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.54-71
    • /
    • 2020
  • In light of the environmental challenges, energy-saving strategies are currently under investigation in the construction industry. This paper focuses on the energy-saving method used in the hydraulic system based on independent metering (IM) technologies, which can overcome the lost energy at the main control valve of the conventional electrohydraulic servo system. By scientifically arranging the proportional valves, the IM system can individually control the flow rate of the inlet and the outlet ports of the actuators. In addition, the IMV system can be used to effectively regenerate energy under different operating modes, thereby saving more energy than conventional hydraulic systems. Therefore, the IMV system has a great potential to improve the energy efficiency of hydraulic machinery. The overall IMV system, including the configuration, proportional valve, operation mode, and the control strategy is introduced via state-of-the-art hydraulic technologies. Finally, the challenges of IM systems are discussed to provide researchers with directions for future development.

Numerical and Experimental Study on the Increase of Removal Efficiency of SO2 in a Laboratory Scale Electrostatic Spray Drying Absorber (실험실 규모 정전기 분무형 반건식 세정기의 SO2 제거효율 향상에 대한 계산 및 실험적 연구)

  • Byun, Young-Cheol;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1111-1120
    • /
    • 1998
  • Spray Drying Absorber(SDA) system, where the combustion product gas is mixed with atomized limestone-slurry droplets and then the chemical reaction of $SO_2$ with alkaline components of the liquid droplets forms sulfates, has been widely used to eliminate $SO_2$ gas from coal fired power plants and waste incinerators. Liquid atomization is necessary because it can maximize the reaction efficiency by increasing the total surface area and dispersion angle of the alkaline components. First, numerical calculations using FLUENT are carried out to investigate $SO_2$ concentration distribution and thus to calculate $SO_2$ removal efficiency. So to attain the optimized spray conditions, then an electrostatic spraying system is set up and spray visualization is performed to show the effect of an electric field on overall droplet size. Next, the effect of an electric field on the concentrations of $SO_2$ is experimentally examined. Field strength is varied from -10 kV to 10 kV and configurations of conduction charging and induction charging are utilized. Consequently, the electrostatic removal efficiency of 501 increases about 30% with the applied voltage of ${\pm}10kV$ but is independent of polarity of the applied voltage. It Is also found that the conduction charging configuration results in higher efficiency of $SO_2$ removal that the induction charging configuration. Finally, the effect of slurry temperature on $SO_2$ removal is studied. The temperature influences on the electrostatic removal efficiency of $SO_2$.

Development of rotary vane air blower for fuel cell (연료전지용 로터리 베인 공기 블로워 개발)

  • Ju, Byeong-Soo;Sim, Jae-Hwi;Seo, Sek-Ho;Oh, Si-Doek
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2429-2433
    • /
    • 2008
  • A rotary vane blower was developed as an air supply system for fuel cell application. As one way of improving the blower efficiency, a roller was adapted between vanes and cylinder housing. The performance of blower was investigated experimentally. The blower power input was about 115W to compress the air at normal atmospheric condition to 0.2 bar with the flow rate of 140 NLPM, resulting in the blower overall efficiency of 43%. After 400 hours of operation, the performance of blower was not changed. The result showed that developed blower was confirmed to be suitable for fuel cell application.

  • PDF

Measurement of Gas Solubility and Mechanical Property for Bumper Polymer (범퍼용 수지의 gas용해도 및 물성 측정)

  • 이정주;차성운;이경수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1366-1369
    • /
    • 2003
  • Today, the industries use polymer material for many purpose. Specially, it is important in automobile industry because tile costs of polymer hold high proportion of the overall cost. If we reduce the weight of automobile, fuel efficiency of car is raised and cost of bumper is lower. Therefore there are many efforts to reduce of car currently. The purpose of this paper is to reduce polymer used in car bumper.

  • PDF

Numerical Analysis on Effects of Positioning and Height of the Contoured Endwall on the Three-Dimensional Flow in an Annular Turbine Nozzle Guide Vane Cascade (끝벽의 설치 위치 및 변형 높이에 따른 환형 터빈 노즐 안내깃 캐스케이드 내 3차원 유동에 미치는 영향에 관한 수치해석)

  • Lee, Wu-Sang;Kim, Dae-Hyun;Min, Jae-Hong;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3247-3252
    • /
    • 2007
  • Endwall losses contribute significantly to the overall losses in modern turbomachinery, especially when aerodynamic airfoil load and pressure ratio are increased. Hence, reducing the extend and intensity of the secondary flow structures helps to enhance overall efficiency. From the large range of viable approaches, a promising combination positioning and height of endwall contouring was chosen. The objective of this study is to document the three-dimensional flow in a turbine cascade in terms of streamwise vorticity, total pressure loss distribution and static pressure distribution on the endwall and blade surface and to propose an appropriate positioning and height of the endwall contouring which show best secondary, overall loss reduction among the simulated endwall. The flow through the gas turbine were numerically analyzed using three dimensional Navier-Stroke equations with a commercial CFD code ANSYS CFX-10. The result shows that the overall loss is reduced near the flat endwall rather than contoured endwall, and the case of contoured endwall installed at 30% from leading edge with height of 25% for span showed best performance.

  • PDF

Design Characteristics on the Hybrid Power System for Quad-Tilt Prop (쿼드-틸트프롭 하이브리드 동력시스템 설계 특성)

  • Kim, Keunbae;Lee, Bohwa
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1196-1199
    • /
    • 2017
  • A series-hybrid power system was designed for quad-tilt prop UAV and the characteristics was analysed. The power system consists of a 4.5kW rotary engine-generator and a li-battery as power sources, a power controller manages the overall power and supplies to the vehicle system. The output power of the engine is to be matched with the generator performance considering mechanical driving loss and generating efficiency, and also loss for charging and discharging of the battery energy. It is applied that the constant speed operation of the engine-generator to minimize overall fuel consumption by integrating the generating power and the battery energy, consequentially the battery capacity and characteristics could be important factors for improvement of the system efficiency.

  • PDF

Role of A-TIG process in joining of martensitic and austenitic steels for ultra-supercritical power plants -a state of the art review

  • Bhanu, Vishwa;Gupta, Ankur;Pandey, Chandan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2755-2770
    • /
    • 2022
  • The need for Dissimilar Welded Joint (DWJ) in the power plant components arises in order to increase the overall efficiency of the plant and to avoid premature failure in the component welds. The Activated-Tungsten Inert Gas (A-TIG) welding process, which is a variant of Tungsten Inert Gas (TIG) welding, is focus of this review work concerning the DWJ of nuclear grade creep-strength enhanced ferritic/martensitic (CSEF/M) steels and austenitic steels. A-TIG DWJs are compared with Multipass-Tungsten Inert Gas (M-TIG) DWJ based on their mechanical and microstructural properties. The limitations of multipass welding have put A-TIG welding in focus as A-TIG provides a weld with increased depth of penetration (DOP) and enhanced mechanical properties. Hence, this review article covers the A-TIG welding principle and working parameters along with detailed analysis of role played by the flux in welding procedure. Further, weld characteristics of martensitic and austenitic steel DWJ developed with the A-TIG welding process and the M-TIG welding process are compared in this study as there are differences in mechanical, microstructural, creep-related, and residual stress obtained in both TIG variants. The mechanics involved in the welding process is deliberated which is revealed by microstructural changes and behavior of base metals and WFZ.

A Experiment Study of Torch Distance on Automated Tandem GMA Welding System (탄뎀 가스메탈아크 용접의 토치 극간거리에 관한 실험적 연구)

  • Lee, Ji-Hye;Kim, Ill-Soo;Jung, Seong-Myeong;Lee, Jong-Pyo;Kim, Young-Su;Park, Min-Ho
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.49-55
    • /
    • 2012
  • The tandem welding process is one of the most efficient welding processes widely used in material joining technique such as manufacturing of strong and durable structures. It facilitates high rate of joint filling with little increase in the overall rate of heat input due to the simultaneous deposition from two electrode wires. The two electrodes in tandem welding process helps in high-efficiency and high productive of welding process. In this study a automated tandem welding system is developed to determine the correlation between cathode and anode and compared with current ratio of the two electrode torch. Three different inter-electrode distances were chosen, 25mm, 35mm and 45mm to perform the experiment with three different current ratio. From the experiment results, the current ratio between two torch has a large impact on width, height and depth of penetration. In addition, a stable bead geometry is obtained when inter-electrode distance is 35mm.

A Study on the used Commutator of Sawing Machine (정류자를 이용한 절삭기계 개발에 관한 연구)

  • Choi, Jae-Hyok;Lee, Jong-Hyung;Lee, Chang-Heon;Byun, Jae-Hyuk;Lee, Jae-Yul;Ro, Seung-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.3
    • /
    • pp.121-125
    • /
    • 2008
  • Commutator which plays the major role in switching electric currents from AC to DC is composed of copper and molding compound. The longevity of the DC motors are mostly hampered by the improper machining of the parts. Smooth surface will be mandatory to create the proper air gap of the commutator. In this thesis the selection of the proper materials and tools, the design and analysis of machine structure and the final test procedures have been investigated to achieve the smooth cut surface of the commutators. The performance and the product of the newly manufactured machine has been compared with those of the existing one. And the test result shows the new sawing machine has better overall efficiency and durability.

  • PDF

Screw Transformation Mechanism of Screw-Propelled Robot for Efficient Void Detection in Grease Pipe (스크류 추진형 검측 로봇의 효율적인 검측을 위한 스크류 구조 변화 메커니즘)

  • Kim, Dongseon;Kim, Hojoong;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.172-177
    • /
    • 2022
  • In general, detection robots using ultrasonic sensors are equipped with sensors to protrude outward or to contact objects. However, in the case of a screw-propelled robot that detects the inside of a reactor tendon duct, if the ultrasonic sensor protrudes to the outside, resistance due to grease is generated, and thus the propulsion efficiency is reduced. In order to increase the propulsion efficiency, the screw must be sharp, and the sharper the screw, the more difficult it is to apply a high-performance ultrasonic sensor, and the detection efficiency decreases. This paper proposes a screw shape-changing mechanism that can improve both propulsion efficiency and detection efficiency. This mechanism includes an overlapped helical ring (OHR) structure and a magnetic clutch system (MCS), and thus the shape of a screw may be changed to a compact size. As a result, the Screw-propelled robot with this mechanism can reduce the overall length by about 150 mm and change the shape of the screw faster and more accurately than a robot with a linear actuator.