• Title/Summary/Keyword: mechanical and electrical characteristics

Search Result 1,552, Processing Time 0.034 seconds

A Study on The Electrical and Mechanical Characteristics due to accelerated degradation of Cycloaliphatic Epoxy Composites (CYCLOALIPHATIC 애폭시 복합재료의 가속열화에 미치는 전기적 및 기계적 특성에 관한 연구)

  • Kim, Hee-Gon;Cho, Han-Goo;Park, Yong-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1323-1326
    • /
    • 1994
  • the application of epoxy composite materials for outdoor insulating systems has some significant advantages compared with conventional inorganic materials, that is low weight in combination with high mechanical strength, small dimensions and design versatility. The experimental results for the basis composition and interlace characteristics of the matrix resin/inorganic fillers($SiO_2$) which are the composite materials have been studied. The electrical characteristics(electrical breakdown, dielectric, insulating resistivity, tracking) and mechanical characteristics( tensile strength, elongation, flexible strength) in the epoxy composite materials have been studied. The life of the epoxy composite material was evaluated by accelerated Weather-Ometer test and the degradation process due to outdoor exposure condition is discussed with respect to the mechanical and electrical properties.

  • PDF

Physical and Electrical Characteristics of Varnish and Varnish Treated Insulating Paper for Pole Transformers

  • Jung, Jong-Wook;Song, Il-Keun;Koo, Kyo-Sun;Song, Hyun-Seok;Kwak, Hee-Ro;Han, Yong-Huei
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.321-326
    • /
    • 2002
  • This paper describes the mechanical and electrical characteristics of insulating paper impregnated with diluted varnish(W-128), according to Korean Standards. The varnish was diluted with a solvent of 6 different wt%. Kraft paper and Nomex paper were impregnated with the diluted varnish in a vacuum condition, and then completely dried. As the mechanical characteristics, the thickness of the completely dried varnish, the drying time and the tensile strength of the specimens were measured, and as the electrical characteristics, the permittivity, the tan $\delta$ and the specific resistance were evaluated as well.

Development of Waterproof Jacket Materials for Power Cables

  • Han, Yong-Huei;Jung, Jong-Wook;Kwon, Tae-Ho;Song, Hyun-Seok;Koo, Kyo-Sun;Han, Byung-Sung
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.4
    • /
    • pp.146-154
    • /
    • 2003
  • This paper describes various characteristics of the new compounds for cable jackets and model cables advanced in waterproof performance in order to essentially solve the problems of underground (URD) distribution class power cable failures. Several compounds were manufactured by the inclusion of additives to base resins available in Korea and tested for basic property, mechanical and electrical characteristics. Two model cables were created by using the compounds determined in the test as being the most appropriate for new structured model cable jacket material. The waterproof performance and mechanical strength of the new cable jackets were verified by applicable tests. As a result, MDPE and LLDPE compounds were superior as cable jackets in both mechanical and electrical characteristic aspects when compared with conventional PVC. In addition, the model cables composed of the new compounds based on MDPE showed good quality results in the water permeability test.

Design of High-Speed PM Synchronous Motor I : Static Characteristics, Parameters, Mechanical Characteristics (고속 영구자석형 동기전동기 설계 I : 정특성, 회로파라미터 기계적 특성 고찰)

  • Jang, Seok-Myeong;Cho, Han-Wook;Choi, Jang-Young;Ko, Kyoung-Jin;Choi, Sang-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.134-135
    • /
    • 2007
  • This paper describes the electrical and mechanical design scheme, static characteristics analysis, electrical parameters and mechanical characteristics of 1kW, 28000 class PM synchronous motor for high-speed applications.

  • PDF

Analysis and Experiments of the Linear Electrical Generator in Wave Energy Farm utilizing Resonance Power Buoy System

  • Park, Sang-Shin;Park, Se Myung;Jung, Jongkyo;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.250-254
    • /
    • 2013
  • In this research, the linear electrical generator in wave energy farm utilizing resonance power buoy system is studied. The mechanical resonance characteristics of the buoy and the wave are analyzed to maximize the kinetic energy in a relatively small wave energy area where WRPS is operated. In this research, we chose an analog model of the linear electrical generator of which size is one-hundredth of an actual size of it in WPRS (Wave energy farm utilizing Resonance Power buoy System) prior to verifying the characteristics of actual model of linear electrical generator in WRPS. In addition, the finite element analysis is conducted using commercial electromagnetic analysis software named MAXWELL to examine the electric characteristic of linear generator. Finally, for the verification of dynamic and electric characteristics of linear generator, the prototype was manufactured and the experiments to measure the displacement and the output electric power were performed.

The aging characteristics of composite insulating materials due to high-temperature and high-moisture (고온 다습하에서 복합절연재료의 열화특성)

  • 이종호;이규철;김순태;박홍태
    • Electrical & Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 1994
  • For increasing the insulating proper-ties and the reliability of composite materials due to environmental aging, the electrical and mechanical characteristics of moisture absortion specimens and moisture desorption specimens were investigated. After moisture absorption wt% and moisture desorption wt% increased with time, a state of saturation arrived subsequent to a constant time. Moisture absorption constants with the layers of glass fiber showed 0.0117 in 1 layer, 0.0123 in 2 layers and 0.0152 in 3 layers. Electrical and mechanical characteristics dropped significantly with moisture absorbing in composite materials. Although moisture dried completly at 70.deg. C, it is impossible to obtain the electrical and mechanical characteristics before moisture absorption. Many defaults by moisture in composite materials exist at interface between epoxy matrix and filler.

  • PDF

Effect of Particle Characteristics and Temperature on Shear Yield Stress of Magnetorheological Fluid

  • Wu, Xiangfan;Xiao, Xingming;Tian, Zuzhi;Chen, Fei;Jian, Wang
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.244-248
    • /
    • 2016
  • Aiming to improve the shear yield stress of magnetorheological fluid, magnetorheological fluids with different particle characteristics are prepared, and the influence rules of particle mass fraction, particle size, nanoparticles content and application temperature on shear yield stress are investigated. Experimental results indicate that shear yield stress increases approximate linearly with the enhancement of particle mass fraction. Particle size and the nanoparticles within 10% mass fraction can improve the shear yield stress effectively. When the application temperature is higher than $100^{\circ}C$, the shear yield stress decreases rapidly because of thermal expansion and thermal magnetization effect.

Conceptual design and analysis of rotor for a 1-kW-Class HTS rotating machine

  • Kim, J.H.;Hyeon, C.J.;Quach, H.L.;Chae, Y.S.;Moon, J.H.;Boo, C.J.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.45-50
    • /
    • 2017
  • This paper presents a conceptual design and analysis for a 1-kW-class high-temperature superconducting rotating machine (HTSRM) rotor. The designed prototype is a small-scale integration system of a HTSRM and a HTS contactless rotary excitation device (CRED). Technically, CRED and HTSRM are connected in the same shaft, and it effectively charges the HTS coils of the rotor field winding by pumping fluxes via a non-contact method. HTS coils in rotor pole body and toroidal HTS wire in CRED rotor are cooled and operated by liquid nitrogen in cryogen tank located in inner-most of rotor. Therefore, it is crucial to securely maintain the thermal stability of cryogenic environment inside rotor. Especially, we critically consider not only on mechanical characteristics of the rotor but also on cryogenic thermal characteristics. In this paper, we conduct two main tasks covering optimizing a conceptual design and performing operational characteristics. First, rotor parameters are conceptually designed by analytical design codes. These parameters consider to mechanical and thermal performances such as mechanical strength, mechanical rigidity, and thermal heat losses of the rotor. Second, mechanical and thermal characteristics of rotor for 1-kW-class HTSRM are analyzed to verify the feasible operation conditions. Hence, three-dimensional finite element analysis (3D-FEA) method is used to perform these analyses in ANSYS-Workbench platform.

도시철도 직류용 FRP 지지애자 및 장간애자 특성 분석

  • Gang, Hyeon-Il;Lee, Gi-Seung;Kim, Yun-Sik;Sim, Jae-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.152-152
    • /
    • 2009
  • Direct Current Fiber Reinforced Plastic (DC FRP) insulators were developed and their mechanical and electrical characteristics were investigated. Electrical tests were carried out to measure withstanding and flashover voltages under common use frequency condition. Tensile and bending tests were performed for the mechanical characteristics. The test results showed that DC FRP insulators had superior voltage resistances and strengths to porcelain insulators.

  • PDF

Investigation on Electromagnetic Field Characteristics of Interior Permanent Magnet Synchronous Machine Considering Harmonics of Phase Current due to Influence of Mechanical Energy Storage System

  • Park, Yu-Seop
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • This paper investigates the influence of mechanical energy storage on the interior permanent magnet synchronous machine (IPMSM) when it is operated in the generating mode. An IPMSM with six-poles and nine-slots employing concentrated coil winding type is considered as the analysis model, and a surface-mounted permanent magnet synchronous motor directly connected to a heavy wheel is applied as the mechanical energy storage system by using the moment of inertia. Based on the constructed experimental set-up with manufactured machines and power converters, the generated electrical energy is converted into the mechanical energy, and the electromagnetic filed characteristics of IPMSM are subsequently investigated by applying the measured phase current of IPMSM based on finite element method. Compared to the characteristics in a no-load condition, it is confirmed that the magnetic behavior, radial force, and power loss characteristics are highly influenced by the harmonics of the phase current due to the mechanical energy storage system.