• Title/Summary/Keyword: mechanical anchor

Search Result 84, Processing Time 0.029 seconds

TAGUCHI OPTIMIZATION OF DISPLACEMENTS DURING THE DESIGN PHASE OF A CONSTRUCTION PROJECT

  • E.S. N. Telis;G. J. Besseris
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.721-728
    • /
    • 2007
  • The prediction of quality characteristics during the design phase of a construction project was fragmented, because no particular method exists. One of the most important key responses is the total displacements (horizontal and vertical). A brainstorming session produces the quality parameters i.e. the control factors which here are identified as: the steel joint, the pile's length, the excavation depth and angle, the distance between the piles, the anchor stretch and length to name just some of the most engaging in the design. The purpose of this study is to optimise these parameters to minimize the total displacements following a methodology based on Taguchi method. For this reason, a 2-level, L8 orthogonal array has been employed to organize the experimentation. Data is obtained from a real-life excavation project designed on the Plaxis v.8 CAE package. Taguchi analysis is performed in the statistical package Minitab.

  • PDF

The Method for Determining the Effectiveness Factor(k value) of Concrete Expansion Anchors in accordance with ACI 355.2 (ACI 355.2에 의한 콘크리트 확장앵커의 유효계수(k값) 결정방법)

  • Lee, Byung Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.151-152
    • /
    • 2020
  • Recently, concrete expansion anchors which are a type of post-installed mechanical anchors are widely used in reinforcement concrete structures. In order to be used in the reinforced concrete structures designed in accordance with ACI 318-19 or ACI 349-13, the structural performance tests of the concrete expansion anchors should be conducted in accordance with ACI 355.2. The effectiveness factor(k) of concrete expansion anchors should be determined through the reference tests and used for the design of anchorage to concrete according to ACI 318-19 or ACI 349-13. In this study, we will look into the method for determining the effectiveness factor(k) of concrete expansion anchors and anchorage design process of concrete expansion anchors by using the effectiveness factor(k) in accordance with ACI 349-19.

  • PDF

SEL-RefineMask: A Seal Segmentation and Recognition Neural Network with SEL-FPN

  • Dun, Ze-dong;Chen, Jian-yu;Qu, Mei-xia;Jiang, Bin
    • Journal of Information Processing Systems
    • /
    • v.18 no.3
    • /
    • pp.411-427
    • /
    • 2022
  • Digging historical and cultural information from seals in ancient books is of great significance. However, ancient Chinese seal samples are scarce and carving methods are diverse, and traditional digital image processing methods based on greyscale have difficulty achieving superior segmentation and recognition performance. Recently, some deep learning algorithms have been proposed to address this problem; however, current neural networks are difficult to train owing to the lack of datasets. To solve the afore-mentioned problems, we proposed an SEL-RefineMask which combines selector of feature pyramid network (SEL-FPN) with RefineMask to segment and recognize seals. We designed an SEL-FPN to intelligently select a specific layer which represents different scales in the FPN and reduces the number of anchor frames. We performed experiments on some instance segmentation networks as the baseline method, and the top-1 segmentation result of 64.93% is 5.73% higher than that of humans. The top-1 result of the SEL-RefineMask network reached 67.96% which surpassed the baseline results. After segmentation, a vision transformer was used to recognize the segmentation output, and the accuracy reached 91%. Furthermore, a dataset of seals in ancient Chinese books (SACB) for segmentation and small seal font (SSF) for recognition were established which are publicly available on the website.

Structural Integrity Assessment of High-Strength Anchor Bolt in Nuclear Power Plant based on Fracture Mechanics Concept (원자력발전소 고강도 앵커 볼트의 파괴역학적 건전성평가)

  • Lim, Eun-Mo;Huh, Nam-Su;Shim, Hee-Jin;Oh, Chang-Kyun;Kim, Hyun-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.875-881
    • /
    • 2013
  • The failure of a bolted joint owing to stress corrosion cracking (SCC) has been considered one of the most important structural integrity issues in a nuclear power plant. In this study, the failure possibility of bolting, which is used to support the steam generator of a pressurized water reactor, owing to SCC and brittle fracture was evaluated in accordance with guidelines proposed by the Electric Power Research Institute, which are called the Reference Flaw Factor method. For this evaluation, first, detailed finite element stress analyses were conducted to obtain the actual nominal stresses of bolting in which either service loads or bolt preloads were considered. Based on these nominal stresses, the structural integrity of bolting was addressed from the viewpoints of SCC and toughness. In addition, the accuracy of the EPRI Reference Flaw Factor for assessing bolting failure was investigated using finite element fracture mechanics analyses.

Bolted connectors with mechanical coupler embedded in concrete: Shear resistance under static load

  • Milicevic, Ivan;Milosavljevic, Branko;Pavlovic, Marko;Spremic, Milan
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.321-337
    • /
    • 2020
  • Contemporary design and construction of steel-concrete composite structures employs the use of prefabricated concrete elements and demountable shear connectors in order to reduce the construction time and costs and enable dismantling of elements for their potential reuse at the end of life of buildings. Bolted shear connector with mechanical coupler is presented in this paper. The connector is assembled from mechanical coupler and rebar anchor, embedded in concrete, and steel bolt, used for connecting steel to concrete members. The behaviour and ultimate resistance of bolted connector with mechanical coupler in wide and narrow members were analysed based on push-out tests and FE analyses conducted in Abaqus software, with focus on concrete edge breakout and bolt shear failure modes. The effect of concrete strength, concrete edge distance and diameter and strength of bolts on failure modes and shear resistance was analysed. It was demonstrated that premature failure by breakout of concrete edge occurs when connectors are located 100 mm or closer from the edge in low-strength and normal-strength reinforced concrete. Furthermore, the paper presents a relatively simple model for hand calculation of concrete edge breakout resistance when bolted connectors with mechanical coupler are used. The model is based on the modification of prediction model used for cast-in and post-installed anchors loaded parallel to the edge, by implementing equivalent influence length of connector with variable diameter. Good agreement with test and FE results was obtained, thus confirming the validity of the proposed method.

A Suture Bridge Transosseous-Equivalent Technique for Bankart Lesions with Deficient Bony Stability - Technical Note - (골안정성 결손을 가진 Bankart 병변에 대한 경 골-유사 교량형 봉합술식 - 술기 보고 -)

  • Choi, Chang-Hyuk;Kim, Shin-Kun;Chang, Il-Woong;Chae, Sung-Bum
    • Journal of the Korean Arthroscopy Society
    • /
    • v.13 no.2
    • /
    • pp.179-182
    • /
    • 2009
  • Purpose: Point fixation at the margin of the glenoid is a limitation of conventional arthroscopic stabilization using suture anchors, and does not afford sufficient footprint healing, especially in glenoid bone deficiency. So, we introduce an arthroscopic suture bridge transosseous-equivalent technique for bony Bankart lesions to avoid the technical disadvantage of point contact with anchor fixation and to improve mechanical stability through cross compression of the labrum. Surgical approach: The technique was adapted from the transosseous-equivalent rotator cuff repair technique using suture bridges, which improved the pressurized contact area and mean pressure between the tendon and footprint. After preparation of the glenoid bed by removal, reshaping, or mobilization of the bony lesion, two anchors (3.0 mm Biofastak, $Arthrex^{(R)}$, Naples, FL) were inserted into the superior and inferior portion of the bony Bankart lesion. Using a suture hook, medial mattress sutures were applied around the capsulolabral portion of the IGHL complex to obtain sufficient depth of glenoid coverage. A 3.5 mm pushloc anchor ($Arthrex^{(R)}$, Naples, FL) hole was made in the articular edge of the anterior glenoid rim. distal, suture bridge was applied, and proximal was inserted to mobilize the labrum in the proximal direction. This avoided the technical disadvantage of point contact with anchor fixation and decreased the level of gap formation through cross-compression of the labrum.

  • PDF

The Development of KOGAS Membrane for LNG Storage Tank (LNG 저장탱크용 KOGAS 멤브레인 개발)

  • Oh, Byoung-Taek;Kim, Young-Kyun;Yoon, Ihn-Soo;Seo, Heung-Seok;Hong, Seong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1203-1208
    • /
    • 2002
  • LNG demand has been rapidly increasing in Korea for a variety of reasons including stable supply, non-polluting, and high combustion efficiency characteristics. As a result the construction and expansion of LNG storage facilities have been continuing at a vigorous pace. Korea Gas Corp. (KOGAS) has developed the design technology of the LNG storage tank. One of the most important structural core element of the LNG storage tank is the membrane, made by stainless steel. The membrane to be applied inside of LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature. Analytical results have been performed to investigate the strength of the membrane and the reaction farce at the anchor point. Experimental studies are performed to investigate the deformation and strength of the membrane which is designed by Kogas. All experiments are conducted on the basis of RPIS, and we found the results are fully satisfied with the RPIS.

Review of Anchorage Systems for Externally Bonded FRP Laminates

  • Grelle, Stephen V.;Sneed, Lesley H.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.17-33
    • /
    • 2013
  • The most recent report by ACI Committee 440 on externally bonded fiber reinforced polymer (FRP) strengthening systems states that systems designed to mechanically anchor FRP should be studied in detail and substantiated by physical testing. To select and design an appropriate anchorage system for use in an FRP strengthening system, it is important that findings from previous research studies be known. This paper presents a comprehensive literature review of the performance of different mechanical anchorage systems used in FRP strengthening applications. Each anchorage system is discussed in terms of its purpose and performance. Advantages and disadvantages of each system are discussed, and areas in need of future research are explored.

Wind-induced fragility assessment of protruding sign structures

  • Sim, Viriyavudh;Jung, WooYoung
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.381-392
    • /
    • 2020
  • Despite that the failure of sign structure may not have disastrous consequence, its sheer number still ensures the need for rigorous safety standard to regulate their maintenance and construction. During its service life, a sign structure is subject to extensive wind load, sometimes well over its permissible design load. A fragility analysis of a sign structure offers a tool for rational decision making and safety evaluation by using a probabilistic framework to consider the various sources of uncertainty that affect its performance. Wind fragility analysis was used to determine the performance of sign structure based on the performance of its connection components. In this study, basic wind fragility concepts and data required to support the fragility analysis of the sign structure such as sign panel's parameters, connection component's parameters, as well as wind load parameters were presented. Fragility and compound fragility analysis showed disparity between connection component. Additionally, reinforcement of the connection system was introduced as an example of the utilization of wind fragility results in the retrofit decision making.

The Development of Wall Membrane for LNG Storage Tank (LNG 저장탱크용 벽체 멤브레인 개발)

  • Oh, B.T.;Hong, S.H.;Yoon, I.S.;Kim, Y.K.;Seo, H.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.907-912
    • /
    • 2001
  • KOGAS had developed the Ring-knot membrane for LNG storage tank. But we found that some modifications were needed in using the Ring-knot membrane for the commercial LNG storage tanks. So, both analytical and experimental studies have been performed to investigate the strength of the new membrane and the reaction force at the anchor point. Using nonlinear FEM code and experiments, the stress analysis of the new corrugated membrane shapes subject to the cryogenic liquid pressure and thermal loading are performed to ensure the stability and fatigue strength of the new membrane. This paper reports on the results of investigations into this new type of membrane.

  • PDF