• Title/Summary/Keyword: mechanical alloy

Search Result 2,955, Processing Time 0.039 seconds

A Nanoindentation Based Study of Mechanical Properties of Al-Si-Cu-Mg Alloy Foam Cell Wall (나노인덴테이션에 의한 Al-Si-Cu-Mg 합금 폼 셀 벽의 기계적 물성 연구)

  • Ha, San;Kim, Am-Kee;Lee, Chang-Hun;Lee, Hak-Joo;Ko, Soon-Gyu;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.382-387
    • /
    • 2004
  • Nanoindentation technique has been used to measure the mechanical properties of aluminium alloy foam cell walls. Al-Si-Cu-Mg alloy foams of different compositions and different cell morphologies were produced using powder metallurgical method. Cell morphology of the foam was controlled during production by varying foaming time and temperature. Mechanical properties such as hardness and Young's modulus were calculated using two different methods: a continuous stiffness measurement (CSM) and an unloading stiffness measurement (USM) method. Experimental results showed that hardness and Young's modulus of Al-5%(wt.)Si-4%Cu-4%Mg (544 alloy) precursor and foam walls are higher than those of Al-3%Si-2%Cu-2%Mg (322 alloy) precursor and foam walls. It was noticed that mechanical properties of cell wall are different from those of precursor materials.

  • PDF

A Study on Wear Properties of Alloys in High Temperature Condition (고온 환경에서 합금의 마모 및 마찰 특성에 관한 연구)

  • Choe, S.Y.;Nemati, Narguess;Kim, D.E.
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.24-29
    • /
    • 2019
  • In this work we investigated the friction and wear characteristics of a magnesium alloy, which has been receiving much attention as a light metal in industrial applications such as automobiles and aerospace. Magnesium is one of the lightest structural material that has high specific strength, lightweight, low density and good formability. However, current issue of using magnesium alloy is that magnesium has weakness against temperature. As the temperature increases, magnesium undergoes poor creep resistance and ease of softening, and therefore, its mechanical strength decreases sharply. To solve this issue, a new type of magnesium alloy that retains high strength at high temperature has been proposed. The tribological behavior of this alloy was investigated using a tribotester with reciprocating motion and heating plate. A stainless steel ball was used as a counter surface. Results showed that extrusion process has similar wear behavior to the commonly used casting process but retains good mechanical strength and durability. The presence of an alloying element enhanced the wear properties especially in high temperature. This study is expected to be utilized as fundamental data for the replacement of high density materials currently used in mechanical industries to a much lighter and durable heat-resistant materials.

Effect of Thermo-Mechanical Treatment on the Damping Capacity of Alloy with Deformation Induced Martensite Transformation (가공유기 마르텐사이트 변태를 갖는 합금의 감쇠능에 미치는 가공열처리의 영향)

  • Han, Hyun-Sung;Kang, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.3
    • /
    • pp.160-166
    • /
    • 2019
  • This study investigates the effect of thermo-mechanical treatment on the damping capacity of the Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. Dislocation, ${\alpha}^{\prime}$ and ${\varepsilon}-martensite$ are formed, and the grain size is refined by deformation and thermo-mechanical treatment. With an increasing number cycles in the thermo-mechanical treatment, the volume fraction of ${\varepsilon}-martensite$ increases and then decreases, whereas dislocation and ${\alpha}^{\prime}-martensite$ increases, and the grain size is refined. In thermo-mechanical treated specimens with five cycles, more than 10 % of the volume fraction of ${\varepsilon}-martensite$ and less than 3 % of the volume fraction of ${\alpha}^{\prime}-martensite$ are attained. Damping capacity decreases by thermo-mechanical treatment and with an increasing number of cycles of thermo-mechanical treatment, and this result shows an opposite tendency for general metal with deformation induced martensite transformation. The damping capacity of the thermo-mechanical treated damping alloy with deformation induced martensite transformation greatly affect the formation of dislocation, grain refining and ${\alpha}^{\prime}-martensite$ and then ${\varepsilon}-martensite$ formation by thermo-mechanical treatment.

Development of probabilistic primary water stress corrosion cracking initiation model for alloy 182 welds considering thermal aging and cold work effects

  • Park, Jae Phil;Yoo, Seung Chang;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1909-1923
    • /
    • 2021
  • We experimentally investigated the effects of thermal aging and cold work on the microstructure, mechanical properties, and primary water stress corrosion cracking (PWSCC) initiation time for Alloy 182 welds. The effects of thermal aging and cold work on the PWSCC initiation time of Alloy 182 were modeled based on the plastic energy concept and the PWSCC initiation data of this study and previous reports by considering censored data. Based on the results, it is estimated that the PWSCC resistance of the Alloy 182 weld firstly increases and then decreases with thermal aging time when the applied stress is kept constant.

Effects of Long-term Heat treatment on Mechanical Softening of Mn-Mo-Ni Low-Alloy Steel (Mn-Mo-Ni 저합금강의 기계적 연화에 미치는 장시간 열처리 영향)

  • Kim, Minsuk;Kim, Chungseok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.294-301
    • /
    • 2021
  • In the present study, we investigate the effects of long-term heat treatment at elevated temperatures on the mechanical softening of the Mn-Mo-Ni low-alloy steel. The influence of long-term heat treatment on microstructure and mechanical strength was evaluated. To simulate the long-term material degradation, heat treatment test was interrupted at several stages up to 10,000 hours in an electric furnace. The Mn-Mo-Ni low-alloy steel shows a typical bainitic phase, which consists of a well-developed lath substructure with fine precipitates along the lath boundaries. However, these fine precipitates were redissolved into the matrix with long-term heat treatment, and then the lath substructures were recovered. Consequently, ultimate tensile strength and yield strength decreased during long-term heat treatment showing a mechanical softening phenomenon.

Microstructural and Mechanical Characteristics of Al-Si-Cu Die Casting Alloy for Engine Mount Bracket (엔진 마운트 브라켓용 다이캐스팅 Al-Si-Cu 합금의 미세조직과 기계적 특성)

  • Chyun, In-Bum;Hong, Seung-Pyo;Kim, Chung-Seok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.6
    • /
    • pp.281-287
    • /
    • 2014
  • Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for engine mount bracket prepared by gravity casting (as-cast) and die-casting (as-diecast) process have been investigated. For the microstructural characterization, the inductively coupled plasma mass spectrometry (ICP-MS), optical microscope (OM), scanning electron microscope (SEM) and electron probe microanalysis (EPMA) analyses are conducted. For the intermetallic phases, the X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) are also conducted with quantitative and qualitative analysis. Micro Vickers hardness and static tensile test are achieved in order to measure mechanical properties of alloys. Secondary dendrite arm spacing (SDAS) of as-cast and as-diecast show 37um and 18um, respectively. A large amount of coarsen eutectic Si, $Al_2Cu$ intermetallic phase and Fe-rich phases are identified in the Al-6Si-2Cu alloy. Mechanical properties of gravity casting alloy are much higher than those of die-casting alloy. Especially, yield strength and elongation of gravity casting alloy show 2 times higher than die-casting alloy. After shot peening, shot peening refined the surface grains and Si particles of the alloys by plastic deformation. The surface hardness value shows that shot peening alloy has higher value than unpeening alloy.

A Study on Bond Strength of Procelain with Non Precious Alloy (도재전장관용 비귀금속합금과 도재의 융착결합에 관한 연구)

  • Kang, Sung-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 1980
  • The adhesive mechanisms on the metal-ceramic restorations have been reported to be mechanical interlocking, chemical bonding, compressive force, and Van der Waal's force, etc. Of these, the mechanical interlocking and chemical bonding forces are thought to affect the adhesive force between Ni-Cr alloy and porcelain. This study investigates the adhesion of Ni-Cr alloy to porcelain according to surface treatment. For this purpose, the following experiments were made; The compositions of Ni-Cr alloy as cast by emission spectrograph, and the oxides produced on Ni-Cr alloy during degassing at $1850^{\circ}F$ for 30 minutes in air and in vacuum were analyzed by X-ray diffractograph. The metal phases of Ni-Cr alloy were observed according to porcelain-baking cyclic heat treatment by photo microscope and the distribution and the shift of elements of Ni-Cr alloy and porcelain and the failure phases between Ni-Cr alloy and porcelain by scanning electron microscope. The adhesive force between Ni-Cr alloy and porcelain was measured according to surface treatment with oxidization and roughening by Instron Universal Testing Machine. Results were as follows; 1. The metal phases of Ni-Cr alloy as cast and degassing state showed the enlarged and fused core, but when subjected to porcelain-baking cyclic heat treatment, showed a dendrite growing. 2. The kinds of metal oxides produced on Ni-Cr alloy during degassing were found to be NiO and $Cr_2O_3$. 3. The distribution of elements at the interface of Ni-Cr alloy and porcelain in degassing state showed demarcation line, but in roughening state, showed mechanical interlocking phase. 4. The shift of elements at the interface occurred in both states, but the shift amount was found to be larger in roughening than in degassing. 5. The adhesive force between Ni-Cr alloy and porcelain was found to be $3.45{\pm}0.93kg/mm^2$, in degassing and $3.82{\pm}0.99kg/mm^2$, in roughening. 6. The failure phase between Ni-Cr alloy and porcelain showed the mixed type failure.

  • PDF

Fractured Surface Morphology and Mechanical Properties of Ni-Cr Based Alloys with Mo Content for Dental Applications

  • Kim, Hyun-Soo;Son, Mee-Kyoung;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.3
    • /
    • pp.260-264
    • /
    • 2016
  • In this study, fractured surface morphology and mechanical properties of Ni-Cr-Mo alloys with various contents of Mo for dental material use have been evaluated by mechanical test. The alloys used were Ni-13Cr-xMo alloys with Mo contents of 4, 6, 8, and 10 wt.%, prepared by using a vacuum arc-melting furnace. Ni-13Cr-xMo alloys were used for mechanical test without heat treatment. The phase and microstructure of alloys using an X-ray diffraction (XRD) and optical microscopy (OM) were evaluated. To examine the mechanical properties of alloys according to microstructure changes, the tensile test and the hardness test were carried out using tensile tester. To understand the mechanism of Mo addition to Ni-Cr alloy on mechanical property, the morphology and fractured surfaces of alloys were investigated by field-emission scanning electron microscope (FE-SEM). As a result, 79Ni-13Cr-8Mo alloy was verified that the tensile strength and the hardness were better than others. Varying Mo content, the changes of microstructures of alloys were identified by OM and SEM and that of 79Ni-13Cr-8Mo alloy was proved fabricated well. Microstructures of alloys were changed depending on Mo content ratio. It has been observed that 8% alloy had the most suitable mechanical property for dental alloy.

Analysis of Microstructure and Mechanical Properties According to Heat Treatment Conditions in GMAW for Al 6061-T6 Alloy (Al 6061-T6 합금의 MIG 용접 후 열처리조건에 따른 미세조직 및 기계적 물성 분석)

  • Kim, Chan Kyu;Cho, Young Tae;Jung, Yoon Gyo;Kang, Shin Hyun
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.34-39
    • /
    • 2016
  • Recently, aluminum alloy has used various industry, such as automobile, shipbuilding and aircraft because of characteristics of low density and high corrosion resistance. Al 6061-T6 is heat treatment materials so it has high strength and mostly used for assembly by mechanical fastening such as a bolting and riveting. In GMA (Gas Metal Arc) welding of alloy, some defects which are hot cracking, porosity, low-mechanical properties and large heat affected zone is generated, because of high heat conductivity. It reduces mechanical properties. In this study, the major factor effected on properties are analyzed after welding in Al 6061-T6 in GMAW, then optimize heat treatment conditions. Plate of Al 6061-T6 with a thickness of 12 mm is welded in V groove and applied welding method is butt joint. Mechanical properties and microstructure are analyzed according to heat treatment condition. Tensile strength, microstructure and Hardness are evaluated. Result of research appears that Al 6061-T6 applied heat treatment show outstanding mechanical properties.

Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy (Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향)

  • Han, H.S.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.