• Title/Summary/Keyword: mechanical alloy

Search Result 3,016, Processing Time 0.027 seconds

A Study on Changes of Mechanical Properties and Microstructure in Porcelain Fused to Gold Alloys by Heat Treatment (도재소부용 금합금의 열처리에 따른 기계적 성질 및 미세조직 변화에 관한 연구)

  • Nam, Sang-Yong;Kwak, Dong-Ju;Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • The purpose of this study was to observe the change of mechanical property and microstructure in porcelain fused to gold alloy by heat treatment. PFG alloys are composed with Au-Pd-Ag alloy of the additional elements with indium, tin and copper. Specimens were tested in hardness using vicker,s micro-hardness tester and the surface micro structural changes were analysed by SEM and EDS. The results were as fellows: 1. The vickers hardness showed highest in Au-Pd-Ag alloy of the additional element with tin. 2. By hardening-oxiding result, the vicker,s hardness increased in additional element with tin but there was no significant difference in additional elements with indium and copper. 3. The surface oxide layer of Au-Pd-Ag alloy with added indium and tin increased but there was small change in additional element with copper. 4. The elements of indium and tin increased with increasing heat treatment in the surface alloy.

  • PDF

Densification Behavior of Titanium Alloy Powder Under Hot Pressing (고온 금형압축시 티타늄 합금 분말의 치밀화 거동)

  • Yang, Hun-Cheol;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3061-3071
    • /
    • 2000
  • Densification behavior of titanium alloy powder was investigated under hot pressing at various pressures and temperatures. Experimental date were obtained for densification of titanium alloy powder under an instantaneous loading and subsequent creep deformation during hot pressing. The constitutive models of Fleck et al. and the modified Gurson were employed for thermo-phastic deformation under the instantaneous loading and that f Abouaf and co-workers for creep deformation of titanium alloy powder during hot pressing. By implementing these constitutive equations into a finite element program(ABAQUS), finite element results were compared with experimental data during hot pressing. To investigate the effect of friction between the power and die wall, density distributions of power compacts were measured and compared with finite element calculations. Finite element results from the models of Fleck et al. and the modified Gurson agreed reasonably good with experimental data for densification and density distribution of titanium alloy powder under the instantaneous loading during hot pressing. Finite element results from the model of Abouaf and co-workers, however, somewhat overestimate experimental data for creep deformation of power compacts during hot pressing.

Thermo-mechanical Characteristics of High Temperature NITINOL Shape Memory Alloy (고온용 NITINOL 형상기억합금의 열적/기계적 특성 평가)

  • Yun, Seong-Ho;Sridhar Krishnan;Scott R. White
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.52-59
    • /
    • 2002
  • The thermo-mechanical characteristics of high temperature NITINOL shape memory alloy were evaluated using DSC with small samples and DMA with three-point bending specimens. The shape memory alloy of 54.4Ni/45.5Ti wt.% was used so that the phase transformation temperatures were in the range of 50~11$0^{\circ}C$. Two types of sample were tested in the experiments corresponding to as-received and annealed conditions. Simple beam bending theory was used to calculate the dynamic moduli of the shape memory alloy. According to the results, a large discrepancy in transformation temperatures was found between DSC and DMA techniques. Annealing treatment was found to suppress the R-phase transformation during cooling and the secondary plateau in the austenite transformation. Such a heat treatment was also significantly influenced to raise the transformation temperatures and the moduli of the shape memory alloy.

Mechanical Properties of Friction Joint of AZ31Mg Alloy (AZ31마그네슘합금의 마찰접합특성)

  • Kong, Y.S.;Chun, B.K.;Kang, D.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.277-282
    • /
    • 2010
  • Magnesium alloy has been known as lightweight material in automobile and electronic industry with aluminum alloy, titanium alloy and plastic material. Friction welding is useful to join various metals and nonferrous metals that are difficult to join by such as gas welding, resistance welding and electronic beam welding. In this study, friction joining was performed to investigate mechanical properties of Mg alloy with 20mm diameter solid bar. Also the optimal joining conditions for its application were determined on the basis of tensile test, and hardness survey. The joining parameters were chosen as heating pressure, heating time, upsetting pressure, and upsetting time. Heating and upsetting pressure were executed under the range of 10~40MPa and 20~80MPa, respectively. From the experimental results, optimal joining conditions were determined as follows; rotating speed=2000rpm, heating pressure=35MPa, upsetting pressure=70MPa, heating time=1sec, upsetting time=5sec. Also the hardness of jointed boundary showed as HV50 which was similar to that of base metal at the optimal condition, and it was supposed that zone of HAZ was 8mm. Finally two materials were strongly mixed at interface part to show a well-combined microstructure without particle growth or any defect.

Preparation of Nd2Fe14B Single Domain Particles from Nd-Fe-B Alloy Ingot Using a Combination of HDDR and Mechanical Milling

  • Lee, J.I.;Kwon, H.W.;Kang, Y.S.
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.102-105
    • /
    • 2008
  • This study examined the feasibility of the combining HDDR-process (hydrogenation, disproportionation, desorption and recombination) with mechanical milling to prepare single domain $Nd_2Fe_{14}B$ particles from a Nd-Fe-B alloy ingot. The $Nd_{15}Fe_{77}B_8$ alloy was HDDR-treated and then subjected to a roller-milling. In the HDDR-treated $Nd_{15}Fe_{77}B_8$ alloy, very small $Nd_2Fe_{14}B$ grains comparable to their critical single domain size(0.3 ${\mu}m$) were observed. These fine individual grains were separated successfully along the grain boundaries by a roller-milling. The separated $Nd_2Fe_{14}B$ grains were found to be single domain particles. These results suggest that single domain particles of the $Nd_2Fe_{14}B$ phase can be prepared from a Nd-Fe-B ingot alloy by combining a HDDR-process with mechanical milling.

Microstructure and Mechanical Properties of Aluminum Alloy Composites Strengthened with Alumina Particles (알루미나입자로 강화된 알루미늄합금 복합재료의 미세조직과 기계적 성질)

  • Oh, Chang-Sup;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.199-205
    • /
    • 2013
  • The mechanical properties and microstructures of aluminum-matrix composites fabricated by the dispersion of fine alumina particles less than $20{\mu}m$ in size into 6061 aluminum alloys are investigated in this study. In the as-quenched state, the yield stress of the composite is 40~85 MPa higher than that of the 6061 alloy. This difference is attributed to the high density of dislocations within the matrix introduced due to the difference in the thermal expansion coefficients between the matrix and the reinforcement. The difference in the yield stress between the composite and the 6061 alloy decreases with the aging time and the age-hardening curves of both materials show a similar trend. At room temperature, the strain-hardening rate of the composite is higher than that of the 6061 alloy, most likely because the distribution of reinforcements enhances the dislocation density during deformation. Both the yield stress and the strain-hardening rate of the T6-treated composite decrease as the testing temperature increases, and the rate of decrease is faster in the composite than in the 6061 alloy. Under creep conditions, the stress exponents of the T6-treated composite vary from 8.3 at 473 K to 4.8 at 623 K. These exponents are larger than those of the 6061 matrix alloy.

Fabrication and Tensile Properties of Alloy 617 base ODS Alloy (Alloy 617계 산화물 분산강화(ODS) 합금의 제조와 인장특성)

  • Min, Hyoung-Kee;Kang, Suk-Hoon;Kim, Tae-Kyu;Han, Chang-Hee;Kim, Do-Hyang;Jang, Jin-Sung
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.482-487
    • /
    • 2011
  • Alloy 617, Ni-22Cr-12Co-9Mo base oxide dispersion strengthened alloy was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Uniaxial tensile tests were performed at room temperature and at $700^{\circ}C$. Compared with the conventional Alloy 617, ODS alloy showed much higher yield strength and tensile strength, but lower elongation. Fracture surfaces of the tensile tested specimens were investigated in order to find out the mechanism of fracture mode at each test temperature. Grain adjustment during tensile deformation was analyzed by electron backscattered diffraction mapping, inverse pole figures and TEM observation.

A Study on the Improvement of Interfacial Bonding Shear Strength of Ti50-Ni50 Shape Memory Alloy Composite (Ti_{50}-Ni_{50} 형상기억합금 복합체의 계면 접학 전단강도 향상에 관한 연구)

  • Lee, Hyo-Jae;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2461-2468
    • /
    • 2000
  • In this paper, single fiber pull-out test is used to measure the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory alloy composite with temperature. Fiber and matrix of $Ti_{50}-Ni_{50}$ shape memory alloy composite are respectively $Ti_{50}-Ni_{50}$ shape memory alloy and epoxy resin. To strengthen the interfacial bonding shear stress, various surface treatments are used. They are the hand-sanded surface treatment, the acid etched surface treatment and the silane coupled surface treatment etc.. The interfacial bonding shear strength of surface treated shape memory alloy fiber is greater than that of surface untreated shape memory alloy fiber by from 10% to 16%. It is assured that the hand-sanded surface treatment and the acid etched surface treatment are the best way to strengthen the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory composite. The best treatment condition of surface is 10% HNO$_3$ solution in the etching method to strengthen the interfacial bonding shear strength of $Ti_{50}-Ni_{50}$ shape memory alloy composite.

EFFECT OF LOAD AND ANODE/CATHODE AREA RATIO ON WEAR OF Zr-ALLOY IN $Na_2SO_4$ SOLUTION

  • Iwabuchi, A.;Hosoya, K;Abe, K.;Shimizu, T.;Kim, S.S.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.205-206
    • /
    • 2002
  • In this paper we examined the contribution of mechanical and electrochemical factors in corrosive wear for Zr-alloy against $Al_2O_3$ ball in $Na_2SO_4$ solution. Normal load and the area of metallic specimen was varied to change the corrosion behavior. At the commence of sliding, the potential drop took place, which increased with load due to the great exposure of fresh surface. Wear volume was linearly proportional to load. The corrosion factor was about 15%. By increasing the Aa/Ac ratio, corrosion factor to total wear decreases and saturates above Aa/Ac=0.15.

  • PDF

An analysis on the solidification process of alloy casting with a contact resistance (접촉 열저항을 고려한 합금주조의 응고과정 해석)

  • Kim, W.S.;Lee, K.S.;Im, I.T.;Kim, K.S.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.57-67
    • /
    • 1997
  • The solidification process of Al 4.5%Cu alloy is numerically studied in the presence of contact resistance between mold and cast. Natural convection is considered in the liquid and mushy regions. The porosity approach is applied to the mushy zone modeling and linear variation of the solid fraction on the temperature is assumed. Results show that the mushy region is wider in the case with a contact resistance compared to the perfect contact condition. The temperature of the cast with a temporal variation in the contact heat transfer coefficient changes very rapidly in the early stage of the casting process compared to that with constant contact heat transfer coefficient.